Yıl: 2020 Cilt: 44 Sayı: 2 Sayfa Aralığı: 57 - 64 Metin Dili: Türkçe DOI: 10.5152/cjm.2020.20017 İndeks Tarihi: 16-05-2021

COVID-19 Hastalarında Mezenkimal Kök Hücre Tedavisi ve Yeni Yaklaşımlar

Öz:
2019 yılı Aralık ayının sonlarında Çin’in Wuhan şehrinde ortaya çıkan yeni tip koronavirüs kaynaklı enfeksiyon, dünya genelinde hızlı şekilde yayılmakta olan bir pandemiye dönüşmüştür. Bu yeni tip koronavirüsün sebep olduğu hastalık Dünya Sağlık Örgütü tarafından resmi olarak COVID-19 (Coronavirus disease-19) olarak duyurulmuştur. COVID-19’un klinik spektrumu değişkenlik göstermekte olup, ventilasyon desteğinin gerektiği akut respiratuvar distres sendromu (ARDS), sepsis, septik şok ve çoklu organ yetmezliği sendromu gibi klinik tablolar ortaya çıkabilmektedir ve özellikle yaşlılarda ve/veya kronik hastalığı olan bireylerde yüksek mortaliteye sebep olmaktadır. Her ne kadar, dünyanın dört bir yanındaki ilaç ve araştırma laboratuvarları, yeni tip koronavirüs için aşı ve tedavi geliştirme çalışmalarına başlamış olsalarda bu çalışmaların sonuçlanmasının aylar süreceği ön görülmektedir. Bu durum, hastalığın tedavisinde etkili olabilecek alternatif ve acil çözüm arayışlarını gerekli kılmıştır. Hastalığın patogenezi incelendiğinde, immün sistemin aşırı reaksiyon göstermesine bağlı olarak ortaya çıkan sitokin fırtınasının sebep olduğu sistemik hasarın oldukça önemli olduğu görülmüştür. Bu sebeple; Covid-19 enfekte hastaların aşırı aktifleşmiş bağışıklık sistemlerinin kontrol altına alınmasının, hastalığın tedavisinde etkili olabileceği düşünülmüş ve güçlü immünmodülatör kapasiteye sahip mezenkimal kök hücreler (MKH’ler) tedavi amacıyla uygulanmaya başlanmış ve olumlu sonuçlar elde edilmiştir. Her ne kadar MKH’lerin COVID-19 enfeksiyonundaki tedavi protokolleri ve klinik kullanım kriterleri değişkenlik gösterse de alınan kısa süreli ilk sonuçlar umut vaat eden terapötik potansiyele sahip oldukları yönündedir.
Anahtar Kelime:

Mesenchymal Stem Cell Therapy and New Approaches in COVID-19 Patients

Öz:
The new type of coronovirus-borne infection, which appeared in Wuhan, Chine in late December 2019, has turned into a rapidly spreading worldwide pandemic. The disease caused by this new type of coronavirus has been officially announced by the World Healty Organization as COVID-19 (Coronovirus disease-19). The clinical spectrum of COVID-19 manifests variations as including respiratory distress syndrome (ARDS) in which ventilation support is required, sepsis, septic shock and multiple organ failure syndrome and may result in high mortality especially in the elder patients and/or in chronic disease. Although drug and research laboratories around the world have started vaccination and treatment development studies for the new type of coronavirus, it is forseen that these studies will take months to complete. This situation made it indispensable to seek alternative and urgent solutions that may be effective in the treatment of the disease. When the pathogenesis of the disease was examined, it was seen that systemic damage caused by cytokin storm resulted from excessive reaction of the immune system is very important. Therefore; taking under control of over-activated immune systems of COVID-19 infected patients was thought to be effective in the treatment of the disease and mesenchymal stem cells (MSCs) which are chracterized with prominent strong immunomodulatory capacity were started to be applied for the treatment and the positive results were obtained. Even though the treatment protocols and clinical application criterias for MSCs in COVID-19 infections have not yet been regulated, the first results have indicated that MSCs have significant promising therapeutic potential.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Derleme Erişim Türü: Erişime Açık
  • 1. Peiris JSM. Coronaviruses. Med Microbiol 2012; 587‐93. [CrossRef]
  • 2. Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, et al. A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med 2020; 382: 727-33. [CrossRef]
  • 3. Lu H, Stratton CW, Tang Y. Outbreak of pneumonia of unknown etiology in Wuhan, China: The mystery and the miracle. J Med Virol 2020; 92: 401-2. [CrossRef]
  • 4. Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 2020; 579: 270-3. [CrossRef]
  • 5. Wan Y, Shang J, Graham R, Baric RS, Li F. Receptor recognition by the novel coronavirus from Wuhan: an analysis based on decade-long structural studies of SARS coronavirus. J Virol 2020; 94: e00127-20. [CrossRef]
  • 6. World Health Organization. WHO director-general’s opening remarks at the mission briefing on COVID-19. Available from: https://www.who.int/dg/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-COVID-19. Date: 11 March 2020.
  • 7. Li Q, Guan X, Wu P, Wang X, Zhou L, Tong Y, et al. Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia. N Engl J Med 2020; 382: 1199-207. [CrossRef]
  • 8. Rothan HA, Byrareddy SN. The epidemiology and pathogenesis of coronavirus disease (COVID-19) outbreak. J Autoimmun 2020; 109: 102433. [CrossRef]
  • 9. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020; 395: 497-506. [CrossRef]
  • 10. Atluri S, Manchikanti L, Hirsch JA. Expanded umbilical cord mesenchymal stem cells (UC-MSCs) as a therapeutic strategy in managing critically Ill COVID-19 patients: The case for compassionate use. Pain Physician 2020; 23: E71-E83.
  • 11. Chung M, Bernheim A, Mei X, Zhang N, Huang M, Zeng X, et al. CT Imaging features of 2019 novel coronavirus (2019-nCoV). Radiology 2020; 295: 202-7. [CrossRef]
  • 12. Aranda-Valderrama P, Kaynar AM. The basic science and molecular mechanisms of lung injury and acute respiratory distress syndrome. Int Anesthesiol Clin 2018; 56: 1-25. [CrossRef]
  • 13. Han S, Mallampalli RK. The acute respiratory distress syndrome: From mechanism to translation. J Immunol 2015; 194: 855-60. [CrossRef]
  • 14. Kuba K, Imai Y, Rao S, Gao H, Guo F, Guan B, et al. A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus-induced lung injury. Nat Med 2005; 11: 875-9. [CrossRef]
  • 15. Iwata-Yoshikawa N, Okamura T, Shimizu Y, Hasegawa H, Takeda M, Nagata N. TMPRSS2 contributes to virus spread and immunopathology in the airways of murine models after coronavirus infection. J Virol 2019; 93: e01815-18. [CrossRef]
  • 16. Chen Y, Guo Y, Pan Y, Zhao ZJ. Structure analysis of the receptor binding of 2019-nCoV. Biochem Biophys Res Commun 2020; 525: 135-40. [CrossRef]
  • 17. Hoffmann M, Kleine-Weber H, Krüger N, Müller M, Drosten C, Pöhlmann S. The novel coronavirus 2019 (2019-nCoV) uses the SARS-coronavirus receptor ACE2 and the cellular protease TMPRSS2 for entry into target cells. bioRxiv 2020; DOI: 10.1101/2020.01.31.929042. [CrossRef]
  • 18. Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet 2020; 395: 507-13. [CrossRef]
  • 19. Singhal T. A Review of Coronavirus Disease-2019 (COVID-19). Indian J Pediatr 2020; 87: 281-6. [CrossRef]
  • 20. Metcalfe SM. Mesenchymal stem cells and management of COVID-19 pneumonia. Med Drug Discov 2020; 5: 100019. [CrossRef]
  • 21. Liu W, Li H. COVID-19: Attacks the 1-beta chain of hemoglobin and captures the porphyrin to inhibit human heme metabolism. ChemRxiv 2020.
  • 22. World Health Organization. Draft of the landscape of COVID-19 candidate vaccines. World Heal Organ 2020.
  • 23. Lu H. Drug treatment options for the 2019-new coronavirus (2019-nCoV). Biosci Trends 2020; 14: 69-71. [CrossRef]
  • 24. Wang M, Cao R, Zhang L, Yang X, Liu J, Xu M, et al. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res 2020; 30: 269-71. [CrossRef]
  • 25. Leng Z, Zhu R, Hou W, Feng Y, Yang Y, Han Q, et al. Transplantation of ACE2- mesenchymal stem cells improves the outcome of patients with COVID-19 pneumonia. Aging Dis 2020; 11: 216. [CrossRef]
  • 26. Liang B, Chen J, Li T, Wu H, Yang W, Li Y, et al. Clinical remission of a critically ill COVID-19 patient treated by human umbilical cord mesenchymal stem cells. ChinaXiv 2020; 23: E71-E83.
  • 27. Nagaishi K, Mizue Y, Chikenji T, Otani M, Nakano M, Saijo Y, et al. Umbilical cord extracts improve diabetic abnormalities in bone marrow-derived mesenchymal stem cells and increase their therapeutic effects on diabetic nephropathy. Sci Rep 2017; 7: 8484. [CrossRef]
  • 28. Khalilpourfarshbafi M, Hajiaghaalipour F, Selvarajan KK, Adam A. Mesenchymal stem cell-based therapies against podocyte damage in diabetic nephropathy. Tissue Eng Regen Med 2017; 14: 201-10. [CrossRef]
  • 29. Li Y, Liu J, Liao G, Zhang J, Chen Y, Li L, et al. Early intervention with mesenchymal stem cells prevents nephropathy in diabetic rats by ameliorating the inflammatory microenvironment. Int J Mol Med 2018; 41: 2629-39. [CrossRef]
  • 30. Prockop DJ, Youn Oh J. Mesenchymal Stem/Stromal Cells (MSCs): Role as guardians of inflammation. Mol Ther 2012; 20: 14-20. [CrossRef]
  • 31. Weiss ARR, Dahlke MH. Immunomodulation by mesenchymal stem cells (MSCs): mechanisms of action of living, apoptotic, and dead MSCs. Front Immunol 2019; 10: 1191-200. [CrossRef]
  • 32. Deng Y, Zhang Y, Ye L, Zhang T, Cheng J, Chen G, et al. Umbilical cord-derived mesenchymal stem cells instruct monocytes towards an IL10-producing phenotype by secreting IL6 and HGF. Sci Rep 2016; 6: 37566. [CrossRef]
  • 33. Jiang XX, Zhang Y, Liu B, Zhang SX, Wu Y, Yu XD, et al. Human mesenchymal stem cells inhibit differentiation and function of monocyte-derived dendritic cells. Blood 2005; 105: 4120-6. [CrossRef]
  • 34. Braza F, Dirou S, Forest V, Sauzeau V, Hassoun D, Chesné J, et al. Mesenchymal stem cells induce suppressive macrophages through phagocytosis in a mouse model of asthma. Stem Cells 2016; 34: 1836-45. [CrossRef]
  • 35. Zangi L, Margalit R, Reich-Zeliger S, Bachar-Lustig E, Beilhack A, Negrin R, et al. Direct imaging of immune rejection and memory induction by allogeneic mesenchymal stromal cells. Stem Cells 2009; 27: 2865-74. [CrossRef]
  • 36. Matthay MA, Calfee CS, Zhuo H, Thompson BT, Wilson JG, Levitt JE, et al. Treatment with allogeneic mesenchymal stromal cells for moderate to severe acute respiratory distress syndrome (START study): a randomised phase 2a safety trial. Lancet Respir Med 2019; 7: 154-62. [CrossRef]
  • 37. Kurtz A. Mesenchymal stem cell delivery routes and fate. Int J Stem Cells 2008; 1: 1-7. [CrossRef]
  • 38. Baksh D, Yao R, Tuan RS. Comparison of proliferative and multilineage differentiation potential of human mesenchymal stem cells derived from umbilical cord and bone marrow. Stem Cells 2007; 25: 1384-92. [CrossRef]
  • 39. Ozkan S, Isildar B, Oncul M, Baslar Z, Kaleli S, Koyuturk M. Ultrastructural analysis of human umbilical cord derived MSCs at undifferentiated stage and during osteogenic and adipogenic differentiation. Ultrastruct Pathol 2018; 42: 199-210. [CrossRef]
  • 40. Nagamura-Inoue T, He H. Umbilical cord-derived mesenchymal stem cells: Their advantages and potential clinical utility. World J Stem Cells 2014; 6: 195-202. [CrossRef]
  • 41. Secco M, Zucconi E, Vieira NM, Fogaça LLQ, Cerqueira A, Carvalho MDF, et al. Multipotent stem cells from um bilical cord: Cord is richer than blood! Stem Cells 2008; 26: 146-50. [CrossRef]
  • 42. Isildar B, Ozkan S, Oncul M, Baslar Z, Kaleli S, Tasyurekli M, et al. Comparison of different cryopreservation protocols for human umbilical cord tissue as source of mesenchymal stem cells. Acta Histochem 2019; 121: 361-7. [CrossRef]
  • 43. Ullah M, Akbar A, Ng NN, Concepcion W, Thakor AS. Mesenchymal stem cells confer chemoresistance in breast cancer via a CD9 dependent mechanism. Oncotarget 2019; 10: 3435-50. [CrossRef]
  • 44. Antunes MA, Abreu SC, Cruz FF, Teixeira AC, Lopes-Pacheco M, Bandeira E, et al. Effects of different mesenchymal stromal cell sources and delivery routes in experimental emphysema. Respir Res 2014; 15: 118. [CrossRef]
  • 45. Kerans F, Lungaro L, Azfer A, Salter D. The Potential of intrinsically magnetic mesenchymal stem cells for tissue engineering. Int J Mol Sci 2018; 19: 3159. [CrossRef]
  • 46. Liu L, Chen JX, Zhang XW, Sun Q, Yang L, Liu A, et al. Chemokine receptor 7 overexpression promotes mesenchymal stem cell migration and proliferation via secreting chemokine ligand 12. Sci Rep 2018; 8: 204. [CrossRef]
  • 47. Li H, Rong P, Ma X, Nie W, Chen C, Yang C, et al. Paracrine effect of mesenchymal stem cell as a novel therapeutic strategy for diabetic nephropathy. Life Sci 2018; 215: 113-8. [CrossRef]
  • 48. Sriramulu S, Banerjee A, Di Liddo R, Jothimani G, Gopinath M, Murugesan R, et al. Concise review on clinical applications of conditioned medium derived from human umbilical cord-mesenchymal stem cells (UC-MSCS). Int J Hematol Stem Cell Res 2018; 12: 230-4.
  • 49. Emukah C, Dittmar E, Naqvi R, Martinez J, Corral A, Moreira A, et al. Mesenchymal stromal cell conditioned media for lung disease: a systematic review and meta-analysis of preclinical studies. Respir Res 2019; 20: 239. [CrossRef]
  • 50. ClinicalTrials.gov Identifier: NCT04273646, Study of human umbilical cord mesenchymal stem cells in the treatment of novel coronavirus severe pneumonia. Date: 09.05.2020
APA Ozkan S, Koyuturk M (2020). COVID-19 Hastalarında Mezenkimal Kök Hücre Tedavisi ve Yeni Yaklaşımlar. , 57 - 64. 10.5152/cjm.2020.20017
Chicago Ozkan Serbay,Koyuturk Meral COVID-19 Hastalarında Mezenkimal Kök Hücre Tedavisi ve Yeni Yaklaşımlar. (2020): 57 - 64. 10.5152/cjm.2020.20017
MLA Ozkan Serbay,Koyuturk Meral COVID-19 Hastalarında Mezenkimal Kök Hücre Tedavisi ve Yeni Yaklaşımlar. , 2020, ss.57 - 64. 10.5152/cjm.2020.20017
AMA Ozkan S,Koyuturk M COVID-19 Hastalarında Mezenkimal Kök Hücre Tedavisi ve Yeni Yaklaşımlar. . 2020; 57 - 64. 10.5152/cjm.2020.20017
Vancouver Ozkan S,Koyuturk M COVID-19 Hastalarında Mezenkimal Kök Hücre Tedavisi ve Yeni Yaklaşımlar. . 2020; 57 - 64. 10.5152/cjm.2020.20017
IEEE Ozkan S,Koyuturk M "COVID-19 Hastalarında Mezenkimal Kök Hücre Tedavisi ve Yeni Yaklaşımlar." , ss.57 - 64, 2020. 10.5152/cjm.2020.20017
ISNAD Ozkan, Serbay - Koyuturk, Meral. "COVID-19 Hastalarında Mezenkimal Kök Hücre Tedavisi ve Yeni Yaklaşımlar". (2020), 57-64. https://doi.org/10.5152/cjm.2020.20017
APA Ozkan S, Koyuturk M (2020). COVID-19 Hastalarında Mezenkimal Kök Hücre Tedavisi ve Yeni Yaklaşımlar. Cerrahpaşa Medical Journal, 44(2), 57 - 64. 10.5152/cjm.2020.20017
Chicago Ozkan Serbay,Koyuturk Meral COVID-19 Hastalarında Mezenkimal Kök Hücre Tedavisi ve Yeni Yaklaşımlar. Cerrahpaşa Medical Journal 44, no.2 (2020): 57 - 64. 10.5152/cjm.2020.20017
MLA Ozkan Serbay,Koyuturk Meral COVID-19 Hastalarında Mezenkimal Kök Hücre Tedavisi ve Yeni Yaklaşımlar. Cerrahpaşa Medical Journal, vol.44, no.2, 2020, ss.57 - 64. 10.5152/cjm.2020.20017
AMA Ozkan S,Koyuturk M COVID-19 Hastalarında Mezenkimal Kök Hücre Tedavisi ve Yeni Yaklaşımlar. Cerrahpaşa Medical Journal. 2020; 44(2): 57 - 64. 10.5152/cjm.2020.20017
Vancouver Ozkan S,Koyuturk M COVID-19 Hastalarında Mezenkimal Kök Hücre Tedavisi ve Yeni Yaklaşımlar. Cerrahpaşa Medical Journal. 2020; 44(2): 57 - 64. 10.5152/cjm.2020.20017
IEEE Ozkan S,Koyuturk M "COVID-19 Hastalarında Mezenkimal Kök Hücre Tedavisi ve Yeni Yaklaşımlar." Cerrahpaşa Medical Journal, 44, ss.57 - 64, 2020. 10.5152/cjm.2020.20017
ISNAD Ozkan, Serbay - Koyuturk, Meral. "COVID-19 Hastalarında Mezenkimal Kök Hücre Tedavisi ve Yeni Yaklaşımlar". Cerrahpaşa Medical Journal 44/2 (2020), 57-64. https://doi.org/10.5152/cjm.2020.20017