Yıl: 2020 Cilt: 44 Sayı: 2 Sayfa Aralığı: 65 - 73 Metin Dili: Türkçe DOI: 10.5152/cjm.2020.20016 İndeks Tarihi: 16-05-2021

COVID-19’un İmmün Sistem ve Diyabet Üzerine Etkileri

Öz:
Koronavirüs (SARS-CoV-2/CoronaVirus) hastalığı (Disease) 2019 (COVID-19) aralık ayında ortaya çıkıp yaklaşık iki ay gibi kısa bir sürede tüm dünyayı etkisi altına almıştır. COVID-19, 11 Mart 2020 tarihinde Dünya Sağlık Örgütü tarafından pandemi olarak ilan edilmiştir. COVID-19 için yeni bir tedavi geliştirilmemiş olması araştırmacıları bu konuda hızla aşı ve ilaç çalışmalarına yönlendirmiştir. Buna ilaveten kronik rahatsızlığı olan bireylerde görülme sıklığının artışı araştırmacıları kronik hastalıkların SARS-CoV-2 ile ilişkisi hakkında hipotezler üretmeye teşvik etmiştir. Özellikle yüksek tansiyon, tip II diyabet, kalp ve böbrek yetmezliği, kronik akciğer hastalıklarından bir ya da birkaçını taşıyan bireyler yüksek risk grubunu oluşturmaktadır. Bununla birlikte SARS-CoV-2’nin aşırı inflamasyona yol açtığı bilinmektedir. Diyabet, bağışıklık fonksiyonlarının bozulması nedeniyle morbidite ve mortalite riskini artırabilir. Bu derlemenin amacı COVID-19’un immün yanıt üzerine olan etkilerini kronik hastalıklardan diyabet ile ilişkilendirerek açıklamaktır.
Anahtar Kelime:

The Effects of COVID-19 on Immune System and Diabetes

Öz:
Severe acute respiratory syndrome (SARS) Coronavirus (CoV)-2 (SARS-CoV-2) disease (COVID-19), which first appeared in December 2019, has affected the whole world in about two months. COVID-19 was announced as a pandemic by the World Health Organization on March 11, 2020. Researchers have begun to study this disease because there is no treatment for COVID-19. In addition, the high incidence of individuals with chronic disease has encouraged researchers to hypothesize about the relationship of chronic diseases with COVID-19. Individuals with one or more chronic diseases such as hypertension, type-II diabetes, cardiac and renal insufficiency, and chronic lung diseases constitute the high-risk group. In addition, it is known that SARS-CoV-2 causes hyperinflammation. Diabetes can increase the risk of morbidity and mortality because of impaired immune system. The purpose of the present review is to explain the effects of COVID-19 on immune response by associating it with chronic diseases such as diabetes.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Derleme Erişim Türü: Erişime Açık
  • 1. Mousavizadeh L, Ghasemi S. Genotype and phenotype of COVID-19: Their roles in pathogenesis. J Microbiol Immunol Infect 2020; DOI: 10.1016/j.jmii.2020.03.022. [Crossref]
  • 2. Song Z, Xu Y, Bao L, Zhang L, Yu P, Qu Y, et al. From SARS to MERS, thrusting coronaviruses into the spotlight. Viruses 2019; 11: 59. [Crossref]
  • 3. Ceccarelli M, Berretta M, Venanzi Rullo E, Nunnari G, Cacopardo B. Differences and similarities between severe acute respiratory syndrome (SARS)-CoronaVirus (CoV) and SARS-CoV-2. Would a rose by another name smell as sweet? Eur Rev Med Pharmacol Sci 2020; 24: 2781-83.
  • 4. Gao Y, Yan L, Huang Y, Liu F, Zhao Y, Cao L, et al. Structure of the RNA-dependent RNA polymerase from COVID-19 virus. Science 2020; 368: 779-82. [Crossref]
  • 5. Rizzo P, Vieceli Dalla Sega F, Fortini F, Marracino L, Rapezzi C, Ferrari R. COVID-19 in the heart and the lungs: could we “Notch” the inflammatory storm? Basic Res Cardiol 2020; 115: 31. [Crossref]
  • 6. Muniyappa R, Gubbi S. COVID-19 pandemic, coronaviruses, and diabetes mellitus. Am J Physiol Endocrinol Metab 2020; 318: E736-E41. [Crossref]
  • 7. Schoeman D, Fielding BC. Coronavirus envelope protein: current knowledge. Virol J 2019; 16: 1-22. [Crossref]
  • 8. Van Dorp L, Acman M, Richard D, Shaw LP, Ford CE, Ormond L, et al. Emergence of genomic diversity and recurrent mutations in SARS-CoV-2. Infect Genet Evol 2020; 83: 104351. [Crossref]
  • 9. Siddiqi HK, Mehra MR. COVID-19 illness in native and immunosuppressed states: a clinical-therapeutic staging proposal. J Heart Lung Transplant 2020; 39: 405-7. [Crossref]
  • 10. Abassi ZA, Skorecki K, Heyman SN, Kinaneh S, Armaly Z. Covid-19 infection and mortality: a physiologist’s perspective enlightening clinical features and plausible interventional strategies. Am J Physiol Lung Cell Mol Physiol 2020; 318: L1020-2. [Crossref]
  • 11. Gulati K, Guhathakurta S, Joshi JC, Rai N, Ray A. Cytokines and their role in health and disease: A Brief overview. MOJ Immunol 2016, 4: 00121. [Crossref]
  • 12. Jamilloux Y, Henry T, Belot A, Viel S, Fauter M, El Jammal T, et al. Should we stimulate or suppress immune responses in COVID-19? Cytokine and anti-cytokine interventions. Autoimmun Rev 2020; 19: 102567. [Crossref]
  • 13. Conti P, Ronconi G, Caraffa A, Gallenga CE, Ross R, Frydas I, et al. Induction of pro-inflammatory cytokines (IL-1 and IL-6) and lung inflammation by Coronavirus-19 (COVI-19 or SARS-CoV-2): anti-inflammatory strategies. J Biol Regul Homeost Agents 2020; 34: 10-5.
  • 14. Coperchini F, Chiovato L, Croce L, Magri F, Rotondi M. Cytokine and growth factor reviews the cytokine storm in COVID-19: An overview of the involvement of the chemokine / chemokine-receptor system. Cytokine Growth Factor Rev 2020; 53: 25-32. [Crossref]
  • 15. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020; 395: 497-506. [Crossref]
  • 16. Wu D, Yang XO. TH17 responses in cytokine storm of COVID-19: an emerging target of JAK 2 inhibitor fedratinib. J Microbiol Immunol Infect 2020; 53: 368-70. [Crossref]
  • 17. Chu H, Chan JFW, Wang Y, Yuen TTT, Chai Y, Hou Y, et al. Comparative replication and immune activation profiles of SARS-CoV-2 and SARS-CoV in human lungs: an ex vivo study with implications for the pathogenesis of COVID-19. Clin Infect Dis 2020; ciaa410. [Crossref]
  • 18. Wan S, Yi Q, Fan S, Lv J, Zhang X, Guo L, et al. Characteristics of lymphocyte subsets and cytokines in peripheral blood of 123 hospitalized patients with 2019 novel coronavirus pneumonia (NCP). MedRxiv 2020; DOI: 10.1101/2020.02.10.20021832. [Crossref]
  • 19. Chen G, Wu D, Guo W, Cao Y, Huang D, Wang H, et al. Clinical and immunological features of severe and moderate coronavirus disease 2019. J Clin Invest 2020; 130: 2620-9. [Crossref]
  • 20. McGonagle D, Sharif K, O’Regan A, Bridgewood C. The role of cytokines including interleukin-6 use in COVID-19 pneumonia related macrophage activation syndrome. Autoimmun Rev 2020; 19: 102537. [Crossref]
  • 21. Zhang J, Xie B, Hashimoto K. Current status of potential therapeutic candidates for the COVID-19 crisis. Brain Behav Immun 2020; 87: 59-73. [Crossref]
  • 22. Shi Y, Wang Y, Shao C, Huang J, Gan J, Huang X, et al. COVID-19 infection: the perspectives on immune responses. Cell Death Differ 2020; 27: 1451-4. [Crossref]
  • 23. Sanders JM, Monogue ML, Jodlowski TZ, Cutrell JB. Pharmacologic treatments for coronavirus disease 2019 (COVID-19): A Review. JAMA 2020; DOI: 10.1001/jama.2020.6019. [Crossref]
  • 24. Xu X, Han M, Li T, Sun W, Wang D, Fu B, et al. Effective treatment of severe COVID-19 patients with tocilizumab. Proc Natl Acad Sci USA 2020; 117: 10970-5. [Crossref]
  • 25. Sanofi and Regeneron begin global Kevzara (sarilumab) clinical trial program in patients with severe COVID-19 [news release]. Available from: http://ww.news.sanofi.us/2020-03-16-Sanofi-and-Regeneron-begin-global-Kevzara-R-sarilumabclinical-trial-program-in-patients-with-severe-COVID-19.
  • 26. Meshkani R, Vakili S. Tissue resident macrophages: Key players in the pathogenesis of type 2 diabetes and its complications. Clin Chim Acta 2016; 462: 77-89. [Crossref]
  • 27. Wu C, Hu X, Song J, Du C, Xu J, Yang D, et al. Heart injury signs are associated with higher and earlier mortality in Coronavirus Disease 2019 (COVID-19) medRxiv 2020; DOI: 10.1101/2020.02.26.20028589. [Crossref]
  • 28. Zhang B, Zhou X, Qiu Y, Feng F, Feng J, Jia Y, et al. Clinical characteristics of 82 cases of death from COVID-19. PLoS One 2020; 15: e0235458. [Crossref]
  • 29. Yang J, Zheng Y, Gou X, Pu K, Chen Z, Guo Q, et al. Prevalence of comorbidities in the novel Wuhan coronavirus (COVID-19) infection: a systematic review and meta-analysis. Int J Infect Dis 2020; 94: 91-5. [Crossref]
  • 30. Li B, Yang J, Zhao F, Zhi L, Wang X, Liu L, et al. Prevalence and impact of cardiovascular metabolic diseases on COVID-19 in China. Clin Res Cardiol 2020; 109: 531-8. [Crossref]
  • 31. Hussain A, Bhowmik B, Moreira NV do C. COVID-19 and Diabetes: knowledge in Progress. Diabetes Res Clin Pract 2020; 162: 108142. [Crossref]
  • 32. Peric S, Stulnig TM. Diabetes and COVID-19: Disease management people. Wien Klin Wochenschr 2020; 20: 1-6.
  • 33. Guo W, Li M, Dong Y, Zhou H, Zhang Z, Tian C, et al. Diabetes is a risk factor for the progression and prognosis of COVID-19. Diabetes Metab Res Rev 2020; e3319. [Crossref]
  • 34. Wu ZH, Tang Y, Cheng Q. Diabetes increases the mortality of patients with COVID 19: a meta-analysis. Acta Diabetol 2020; 1-6. [Crossref]
  • 35. Pal R, Bhadada SK. COVID-19 and diabetes mellitus: An unholy interaction of two pandemics. Diabetes Metab Syndr 2020; 14: 513-7. [Crossref]
  • 36. American Diabetes Association. 15. Diabetes care in the hospital: standards of Medical Care in Diabetes 2020. Diabetes Care 2020; 43(Suppl 1): S193-S202. [Crossref]
  • 37. Fujiwara T, Harigae H. Biology of heme in mammalian erythroid cells and related disorders. Biomed Res Int 2015; 2015: 278536. [Crossref]
  • 38. Liu W, Li H. COVID-19: Attacks the 1-beta chain of hemoglobin and captures the porphyrin to inhibit human heme metabolism. Chemrxiv 2020.
  • 39. Read RJ, Keith T, Building P, Road H. Flawed methods in “COVID-19: Attacks the 1-beta chain of hemoglobin and captures the porphyrin to inhibit human heme metabolism’’. Chemrxiv 2020; DOI: 10.26434/chemrxiv.12120912. [Crossref]
  • 40. Li H, Liu L, Zhang D, Xu J, Dai H, Tang N, et al. SARS-CoV-2 and viral sepsis: observations and hypotheses. Lancet 2020; 395: 1517-20. [Crossref]
  • 41. Yan Y, Yang Y, Wang F, Ren H, Zhang S, Shi X. Clinical characteristics and outcomes of patients with severe covid-19 with diabetes. BMJ Open Diab Res Care 2020; 8: e001343. [Crossref]
  • 42. Fang L, Karakiulakis G, Roth M. Are patients with hypertension and diabetes mellitus at increased risk for COVID-19 infection? Lancet Respir Med 2020; 8: e21. [Crossref]
  • 43. Chen Y, Yang D, Cheng B, ChenJ, Peng A, Yang C, et al. Clinical characteristics and outcomes of patients with diabetes and COVID-19 in association with glucose-lowering medication. Diabetes Care 2020; 43: 1399-407. [Crossref]
  • 44. Rico-Mesa JS, White A, Anderson AS. Outcomes in patients with COVID-19 infection taking ACEI/ARB. Curr Cardiol Rep 2020; 22: 31. [Crossref]
  • 45. Yang JK, Lin SS, Ji XJ, Guo LM. Binding of SARS coronavirus to its receptor damages islets and causes acute diabetes. Acta Diabetol 2010; 47: 193-9. [Crossref]
  • 46. Romaní-Pérez M, Outeiriño-Iglesias V, Moya CM, Santisteban P, González-Matías LC, Vigo E, et al. Activation of the GLP-1 receptor by liraglutide increases ACE2 expression, reversing right ventricle hypertrophy, and improving the production of SP-A and SP-B in the lungs of type 1 diabetes rats. Endocrinology 2015; 156: 3559-69. [Crossref]
  • 47. Ceriello A, Stoian AP, Rizzo M. COVID-19 and diabetes management: What should be considered? Diab Res Clin Pract 2020; 163: 108151. [Crossref]
  • 48. Mulvihill EE, Drucker DJ. Pharmacology, physiology, and mechanisms of action of dipeptidyl peptidase-4 inhibitors. Endocr Rev 2014; 35: 992-1019. [Crossref]
  • 49. Fadini GP, Morieri ML, Longato E, Bonora BM, Pinelli S, Selmin S, et al. Exposure to DPP-4 inhibitors and COVID-19 among people with type 2 diabetes. A case-control study. Diabetes Obes Metab 2020; DOI: 10.1111/dom.14097.
  • 50. Garg SK, Rodbard D, Hirsch IB, Forlenza GP. Managing new-onset type 1 diabetes during the COVID-19 pandemic: Challenges and opportunities. Diabetes Technol Ther 2020; 22: 431-9.
APA Beydogan A, ÇOLAK D, Bilge B, Bolkent S (2020). COVID-19’un İmmün Sistem ve Diyabet Üzerine Etkileri. , 65 - 73. 10.5152/cjm.2020.20016
Chicago Beydogan Alisa Bahar,ÇOLAK Dilara Kamer,Bilge Bilge Nur,Bolkent Sema COVID-19’un İmmün Sistem ve Diyabet Üzerine Etkileri. (2020): 65 - 73. 10.5152/cjm.2020.20016
MLA Beydogan Alisa Bahar,ÇOLAK Dilara Kamer,Bilge Bilge Nur,Bolkent Sema COVID-19’un İmmün Sistem ve Diyabet Üzerine Etkileri. , 2020, ss.65 - 73. 10.5152/cjm.2020.20016
AMA Beydogan A,ÇOLAK D,Bilge B,Bolkent S COVID-19’un İmmün Sistem ve Diyabet Üzerine Etkileri. . 2020; 65 - 73. 10.5152/cjm.2020.20016
Vancouver Beydogan A,ÇOLAK D,Bilge B,Bolkent S COVID-19’un İmmün Sistem ve Diyabet Üzerine Etkileri. . 2020; 65 - 73. 10.5152/cjm.2020.20016
IEEE Beydogan A,ÇOLAK D,Bilge B,Bolkent S "COVID-19’un İmmün Sistem ve Diyabet Üzerine Etkileri." , ss.65 - 73, 2020. 10.5152/cjm.2020.20016
ISNAD Beydogan, Alisa Bahar vd. "COVID-19’un İmmün Sistem ve Diyabet Üzerine Etkileri". (2020), 65-73. https://doi.org/10.5152/cjm.2020.20016
APA Beydogan A, ÇOLAK D, Bilge B, Bolkent S (2020). COVID-19’un İmmün Sistem ve Diyabet Üzerine Etkileri. Cerrahpaşa Medical Journal, 44(2), 65 - 73. 10.5152/cjm.2020.20016
Chicago Beydogan Alisa Bahar,ÇOLAK Dilara Kamer,Bilge Bilge Nur,Bolkent Sema COVID-19’un İmmün Sistem ve Diyabet Üzerine Etkileri. Cerrahpaşa Medical Journal 44, no.2 (2020): 65 - 73. 10.5152/cjm.2020.20016
MLA Beydogan Alisa Bahar,ÇOLAK Dilara Kamer,Bilge Bilge Nur,Bolkent Sema COVID-19’un İmmün Sistem ve Diyabet Üzerine Etkileri. Cerrahpaşa Medical Journal, vol.44, no.2, 2020, ss.65 - 73. 10.5152/cjm.2020.20016
AMA Beydogan A,ÇOLAK D,Bilge B,Bolkent S COVID-19’un İmmün Sistem ve Diyabet Üzerine Etkileri. Cerrahpaşa Medical Journal. 2020; 44(2): 65 - 73. 10.5152/cjm.2020.20016
Vancouver Beydogan A,ÇOLAK D,Bilge B,Bolkent S COVID-19’un İmmün Sistem ve Diyabet Üzerine Etkileri. Cerrahpaşa Medical Journal. 2020; 44(2): 65 - 73. 10.5152/cjm.2020.20016
IEEE Beydogan A,ÇOLAK D,Bilge B,Bolkent S "COVID-19’un İmmün Sistem ve Diyabet Üzerine Etkileri." Cerrahpaşa Medical Journal, 44, ss.65 - 73, 2020. 10.5152/cjm.2020.20016
ISNAD Beydogan, Alisa Bahar vd. "COVID-19’un İmmün Sistem ve Diyabet Üzerine Etkileri". Cerrahpaşa Medical Journal 44/2 (2020), 65-73. https://doi.org/10.5152/cjm.2020.20016