Yıl: 2021 Cilt: 30 Sayı: 1 Sayfa Aralığı: 18 - 27 Metin Dili: İngilizce DOI: 10.4274/mirt.galenos.2020.64436 İndeks Tarihi: 18-05-2021

18Fluorine-fluorodeoxyglucose PET/CT Imaging in Childhood Malignancies

Öz:
Objectives: The aim of the study was to evaluate the utility of 18fluorine-fluorodeoxyglucose (18F-FDG) positron emission tomography/computed tomography (PET/CT) in the diagnosis, staging, restaging, and treatment response of childhood malignancies.Methods: This study included 52 patients (32 boys, 20 girls) who were referred to our clinic between November 2008 and December 2018 with the diagnosis of malignancy. The patients were evaluated retrospectively. Median age of the patients was 13 years (range 2-17). 18F-FDG was given to the patients intravenously, and time of flight with PET/16 slice CT was performed 1 hour thereafter. The lowest dose was 2 mCi (74 MBq) and the highest dose was 10 mCi (370 MBq). Fasting blood sugars of all patients were found below 200 mg/dL (11.1 mmol/L).Results: 18F-FDG PET/CT was performed to evaluate the response to treatment in 38 of 52 children, staging in 11 patients (staging and evaluation of the response to treatment in nine of them), restaging in 2 patients, restaging, and evaluation of the response to treatment in 1 patient. 18F-FDG PET/CT examination was reported as normal in 13 patients (5 girls, 8 boys). The pathological 18F-FDG uptake was detected in 39 patients (14 girls, 25 boys), which indicated metastasis and/or recurrence of the primary disease. Total number of deaths was 30 (13 girls, 17 boys).Conclusion: 18F-FDG PET/CT has a significant role for staging, restaging, treatment response, and detection of metastatic disease but it is limited for the early diagnosis of childhood cancers.
Anahtar Kelime:

Çocukluk Çağı Malignitelerinde 18Flor-florodeoksiglukoz PET/BT Görüntüleme

Öz:
Amaç: Çalışmamızın amacı, çocukluk çağı malignitelerinin tanı, evreleme, yeniden evreleme ve tedaviye cevabın değerlendirilmesinde 18flor-florodeoksiglukoz (18F-FDG) pozitron emisyon tomografisi/bilgisayarlı tomografinin (PET/BT) yararını göstermektir.Yöntem: Kasım 2008 ve Aralık 2018 tarihleri arasında, malignensi tanılı 52 hastanın (32 erkek, 20 kız) dosyaları ve görüntüleri geriye dönük olarak incelendi. Ortalama yaş 13 (2-17) idi. 18F-FDG’nin intravenöz enjeksiyonundan 1 saat sonra, time of flight/16 kesit BT yapıldı. Çalışmamızda en düşük doz 2 mCi (74 MBq), en yüksek doz 10 mCi (370 MBq). Tüm hastaların açlık kan şekerleri 200 mg/dL’nin (11,1 mmol/L) altındaydı.Bulgular: 18F-FDG PET/BT, 52 hastanın 38’ine tedaviye yanıt değerlendirilmesi, 11 hastaya evreleme (9 hasta evreleme ve aynı zamanda tedaviye yanıt değerlendirilmesi), 2 hastaya yeniden evreleme, 1 hastaya yeniden evreleme ve tedaviye yanıt değerlendirilmesi amacıyla yapıldı. 18F-FDG PET/BT çalışması 13 hastada (5 kız, 8 erkek) normaldi. Otuz dokuz hastada (14 kız, 25 erkek) çalışma, metastaz ve/veya primer hastalığın nüksü ile uyumlu bulundu. Toplam ölüm sayısı 30 (13 kız, 17 erkek) idi.Sonuç: 18F-FDG PET/BT çocukluk çağı malignensilerinin tanı, evreleme, yeniden evreleme ve tedaviye yanıt değerlendirilmesi açısından çok faydalıdır ancak erken tanıda yararı sınırlıdır.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • 1. Voss SD. Pediatric oncology and the future of oncological imaging. Pediatr Radiol 2011;41:172-185.
  • 2. Freebody J, Wegner EA, Rossleigh MA. 2-deoxy-2-((18)F) fluoro-Dglucose positron emission tomography/computed tomography imaging in paediatric oncology. World J Radiol 2014;6:741-755.
  • 3. Costantini DL, Vali R, Chan J, McQuattie S, Charron M. Dual-time-point FDG PET/CT for the evaluation of pediatric tumors. AJR Am J Roentgenol 2013;200: 408-413.
  • 4. Shulkin BL. PET imaging in pediatric oncology. Pediatr Radiol 2004;34:199-204.
  • 5. Uslu L, Donig J, Link M, Rosenberg J, Quon A, Daldrup-Link HE. Value of 18F-FDG PET and PET/CT for evaluation of pediatric malignancies. J Nucl Med 2015; 56:274-286.
  • 6. Cheng G, Servaes S, Zhuang H. Value of (18)F-fluoro-2-deoxy-D-glucose positron emission tomography/computed tomography scan versus diagnostic contrast computed tomography in initial staging of pediatric patients with lymphoma. Leuk Lymphoma 2013;54:737-742.
  • 7. Miller E, Metser U, Avrahami G, Dvir R, Valdman D, Sira LB, Sayar D, Burstein Y, Toren A, Yaniv I, Even-Sapir E. Role of 18F-FDG PET/CT in staging and follow-up of lymphoma in pediatric and young adult patients. J Comput Assist Tomogr 2006; 30:689-694.
  • 8. Steliarova-Foucher E, Stiller C, Lacour B, Kaatsch P. International Classification of Childhood Cancer, third edition. Cancer 2005;103:1457-1467.
  • 9. Percy CL, Smith MA, Linet M. Et al. Lymphomas and reticuloendothelial neoplasms.In: Ries LAG, Smith MA, Gurney, et al., eds. Cancer incidance and Survival Among children and adolescents: United States SEER Program 1975-1995. Bethesda MD: National Cancer İnstitude;1999. NIH publication 99-4649.
  • 10. Amankwah EK, Conley AP, Reed DR. Epidemiology and therapies for metastatic sarcoma. Clin Epidemiol 2013;5:147-162.
  • 11. Ducimetière F, Lurkin A, Ranchère-Vince D, Decouvelaere AV, Péoc’h M, Istier L, Chalabreysse P, Muller C, Alberti L, Bringuier PP, Scoazec JY, Schott AM, Bergeron C, Cellier D, Blay JY, Ray-Coquard I. Incidence of sarcoma histotypes and molecular subtypes in a prospective epidemiological study with central pathology review and molecular testing. PLoS One 2011;6:20294.
  • 12. Arndt CA, Crist WM. Common musculoskeletal tumors of childhood and adolescence. N Engl J Med 1999;341:342-352.
  • 13. Burns DK, Kumar V. The musculoskeletal system. In: Kumar V, Cotran RS, Robbins SL, eds. Robbins Basic Pathology. 7th ed. Philadelphia, Pennsylvania: Saunders; 2003:769-770.
  • 14. Bhojwani D, McCarville MB, Choi JK, Sawyer J, Metzger ML, Inaba H, Davidoff AM, Gold R, Shulkin BL, Sandlund JT. The role of FDG-PET/CT in the evaluation of residual disease in paediatric non-Hodgkin lymphoma. Br J Haematol 2015;168: 845-853.
  • 15. Uslu-Beşli L, Atay Kapucu LÖ, Karadeniz C, Akdemir ÜÖ, Pinarli FG, Aydos U, Okur A, Kaya Z, Samanci C, Karabacak NI. Comparison of FDG PET/MRI and FDG PET/CT in Pediatric Oncology in Terms of Anatomic Correlation of FDG-positive Lesions. J Pediatr Hematol Oncol 2019;41:542-550.
  • 16. American Academy of Pediatrics Committee on Drugs: Guidelines for monitoring and management of pediatric patients during and after sedation for diagnostic and therapeutic procedures. Pediatrics 1992; 89: 1110-1115.
  • 17. American Society of Anesthesiologists Task Force on Sedation and Analgesia by Non-Anesthesiologists. Practice guidelines for sedation and analgesia by non-anesthesiologists. Anesthesiology 2002;96:1004-1017.
  • 18. Cohade C, Mourtzikos KA, Wahl RL. “USA-Fat”: prevalence is related to ambient outdoor temperature-evaluation with 18F-FDG PET/CT. J Nucl Med 2003; 44:1267-1270.
  • 19. Cohade C, Osman M, Pannu HK, Wahl RL. Uptake in supraclavicular area fat (“USA-Fat”): description on 18F-FDG PET/CT. J Nucl Med 2003;44:170-176.
  • 20. Yeung HW, Grewal RK, Gonen M, Schöder H, Larson SM. Patterns of (18)F-FDG uptake in adipose tissue and muscle: a potential source of false-positives for PET. J Nucl Med 2003;44:1789-1796.
  • 21. Steliarova-Foucher E, Colombet M, Ries LAG, Moreno F, Dolya A, Bray F, Hesseling P, Shin HY, Stiller CA; IICC-3 contributors. International incidence of childhood cancer, 2001-10: a population-based registry study. Lancet Oncol 2017;18:719-731.
  • 22. Nihayah S, Shammas A, Vali R, Parra D, Alexander S, Amaral J, Connolly B. Correlation of PET/CT and Image-Guided Biopsies of Pediatric Malignancies. AJR Am J Roentgenol 2017;208:656-662.
  • 23. Dong Y, Zhang X, Wang S, Chen S, Ma C. 18F-FDG PET/CT is useful in initial staging, restaging for pediatric rhabdomyosarcoma. Q J Nucl Med Mol Imaging 2017;61:438-446.
  • 24. Hurley C, McCarville MB, Shulkin BL, Mao S, Wu J, Navid F, Daw NC, Pappo AS, Bishop MW. Comparison of (18) F-FDG-PET-CT and Bone Scintigraphy for Evaluation of Osseous Metastases in Newly Diagnosed and Recurrent Osteosarcoma. Pediatr Blood Cancer 2016;63:1381-1386.
  • 25. Treglia G, Taralli S, Bertagna F, Salsano M, Muoio B, Novellis P, Vita ML, Maggi F, Giordano A. Usefulness of whole-body fluorine-18-fluorodeoxyglucose positron emission tomography in patients with neurofibromatosis type 1: a systematic review. Radiol Res Pract 2012;2012:431029.
  • 26. London K, Cross S, Onikul E, Dalla-Pozza L, Howman-Giles R. 18F-FDG PET/CT in paediatric lymphoma: comparison with conventional imaging. Eur J Nucl Med Mol Imaging 2011;38:274-284.
  • 27. Kluge R, Kurch L, Georgi T, Metzger M. Current Role of FDG-PET in Pediatric Hodgkin’s Lymphoma. Semin Nucl Med 2017;47:242-257.
  • 28. Flerlage JE, Kelly KM, Beishuizen A, Cho S, De Alarcon PA, Dieckmann U, Drachtman RA, Hoppe BS, Howard SC, Kaste SC, Kluge R, Kurch L, Landman-Parker J, Lewis J, Link MP, McCarten K, Punnett A, Stoevesandt D, Voss SD, Wallace WH, Mauz-Körholz C, Metzger ML. Staging Evaluation and Response Criteria Harmonization (SEARCH) for Childhood, Adolescent and Young Adult Hodgkin Lymphoma (CAYAHL): Methodology statement. Pediatr Blood Cancer 2017;64.
  • 29. Gatenby RA, Gillies RJ. Why do cancers have high aerobic glycolysis? Nat Rev Cancer 2004;4:891-899.
  • 30. Portwine C, Marriott C, Barr RD. PET imaging for pediatric oncology: an assessment of the evidence. Pediatr Blood Cancer 2010;55:1048-1061.
  • 31. McCarville MB. PET-CT imaging in pediatric oncology. Cancer Imaging 2009;9: 35-43.
  • 32. Franzius C. FDG-PET/CT in pediatric solid tumors. Q J Nucl Med Mol Imaging 2010;54:401-410.
  • 33. Kleis M, Daldrup-Link H, Matthay K, Goldsby R, Lu Y, Schuster T, Schreck C, Chu PW, Hawkins RA, Franc BL. Diagnostic value of PET/CT for the staging and restaging of pediatric tumors. Eur J Nucl Med Mol Imaging 2009;36:23-36.
  • 34. Furth C, Steffen IG, Amthauer H, Ruf J, Misch D, Schönberger S, Kobe C, Denecke T, Stöver B, Hautzel H, Henze G, Hundsdoerfer P. Early and late therapy response assessment with [18F] fluorodeoxyglucose positron emission tomography in pediatric Hodgkin’s lymphoma: analysis of a prospective multicenter trial. J Clin Oncol 2009;27:4385-4391.
  • 35. Gallamini A, Hutchings M, Avigdor A, Polliack A. Early interim PET scan in Hodgkin lymphoma: where do we stand? Leuk Lymphoma 2008;49:659-662.
  • 36. Hawkins DS, Conrad EU 3rd, Butrynski JE, Schuetze SM, Eary JF. [F-18]- fluorodeoxy-D-glucose-positron emission tomography response is associated with outcome for extremity osteosarcoma in children and young adults. Cancer 2009; 115:3519-3525.
  • 37. Hawkins DS, Schuetze SM, Butrynski JE, Rajendran JG, Vernon CB, Conrad EU 3rd, Eary JF. [18F]Fluorodeoxyglucose positron emission tomography predicts outcome for Ewing sarcoma family of tumors. J Clin Oncol 2005;23:8828-8834.
  • 38. Gelfand MJ, Parisi MT, Treves ST; Pediatric Nuclear Medicine Dose Reduction Workgroup. Pediatric radiopharmaceutical administered doses: 2010 North American consensus guidelines. J Nucl Med 2011;52:318-322.
  • 39. Treves ST, Gelfand MJ, Fahey FH, Parisi MT. 2016 Update of the North American Consensus Guidelines for Pediatric Administered Radiopharmaceutical Activities. J Nucl Med 2016;57:15-18.
  • 40. Qiu L, Chen Y, Wu J. The role of 18F-FDG PET and 18F-FDG PET/CT in the evaluation of pediatric Hodgkin’s lymphoma and non-Hodgkin’s lymphoma. Hell J Nucl Med 2013;16:230-236.
  • 41. London K, Cross S, Onikul E, Dalla-Pozza L, Howman-Giles R. 18F-FDG PET/CT in paediatric lymphoma: comparison with conventional imaging. Eur J Nucl Med Mol Imaging 2011;38:274-284.
  • 42. Sharp SE, Gelfand MJ, Shulkin BL. Pediatrics: diagnosis of neuroblastoma. Semin Nucl Med 2011;41:345-353.
  • 43. Piccardo A, Lopci E, Conte M, Foppiani L, Garaventa A, Cabria M, Villavecchia G, Fanti S, Cistaro A. PET/CT imaging in neuroblastoma. Q J Nucl Med Mol Imaging 2013;57:29-39.
  • 44. Mueller WP, Coppenrath E, Pfluger T. Nuclear medicine and multimodality imaging of pediatric neuroblastoma. Pediatr Radiol 2013;43:418-427.
  • 45. Kushner BH, Yeung HW, Larson SM, Kramer K, Cheung NK. Extending positron emission tomography scan utility to high-risk neuroblastoma: fluorine-18 fluorodeoxyglucose positron emission tomography as sole imaging modality in follow-up of patients. J Clin Oncol 2001;19:3397-3405.
  • 46. Choi YJ, Hwang HS, Kim HJ, Jeong YH, Cho A, Lee JH, Yun M, Lee JD, Kang WJ. (18)F-FDG PET as a single imaging modality in pediatric neuroblastoma: comparison with abdomen CT and bone scintigraphy. Ann Nucl Med 2014;28: 304-313.
  • 47. Alexander N, Vali R, Ahmadzadehfar H, Shammas A, Baruchel S. Review: The Role of Radiolabeled DOTA-Conjugated Peptides for Imaging and Treatment of Childhood Neuroblastoma. Curr Radiopharm 2018;11:14-21.
  • 48. Bodei L, Cremonesi M, Grana CM, Fazio N, Iodice S, Baio SM, Bartolomei M, Lombardo D, Ferrari ME, Sansovini M, Chinol M, Paganelli G. Peptide receptor radionuclide therapy with 177Lu-DOTATATE: the IEO phase I-II study. Eur J Nucl Med Mol Imaging 2011;38:2125-2135.
  • 49. Bodei L, Mueller-Brand J, Baum RP, Pavel ME, Hörsch D, O’Dorisio MS, O’Dorisio TM, Howe JR, Cremonesi M, Kwekkeboom DJ, Zaknun JJ. The joint IAEA, EANM, and SNMMI practical guidance on peptide receptor radionuclide therapy (PRRNT) in neuroendocrine tumours. Eur J Nucl Med Mol Imaging 2013;40:800-816.
  • 50. Brans B, Mottaghy FM, Kessels A. 90Y/177Lu-DOTATATE therapy: survival of the fittest? Eur J Nucl Med Mol Imaging 2011;38:1785-1787.
  • 51. Delpassand ES, Samarghandi A, Zamanian S, Wolin EM, Hamiditabar M, Espenan GD, Erion JL, O’Dorisio TM, Kvols LK, Simon J, Wolfangel R, Camp A, Krenning EP, Mojtahedi A. Peptide receptor radionuclide therapy with 177Lu-DOTATATE for patients with somatostatin receptorexpressing neuroendocrine tumors: the first US phase 2 experience. Pancreas 2014;43:518-525.
  • 52. Kunikowska J, Królicki L, Hubalewska-Dydejczyk A, Mikołajczak R, Sowa-Staszczak A, Pawlak D. Clinical results of radionuclide therapy of neuroendocrine tumours with 90Y-DOTATATE and tandem 90Y/177Lu-DOTATATE: which is a better therapy option? Eur J Nucl Med Mol Imaging 2011;38:1788-1797.
  • 53. Maecke HR, Reubi JC. Somatostatin receptors as targets for nuclear medicine imaging and radionuclide treatment. J Nucl Med 2011;52:841-844.
  • 54. Waldherr C, Pless M, Maecke HR, Haldemann A, Mueller-Brand J. The clinical value of [90Y-DOTA]-D-Phe1-Tyr3-octreotide (90Y-DOTATOC) in the treatment of neuroendocrine tumours: a clinical phase II study. Ann Oncol 2001;12:941-945.
  • 55. Kong G, Hofman MS, Murray WK, Wilson S, Wood P, Downie P, Super L, Hogg A, Eu P, Hicks RJ. Initial Experience With Gallium-68 DOTAOctreotate PET/CT and Peptide Receptor Radionuclide Therapy for Pediatric Patients With Refractory Metastatic Neuroblastoma. J Pediatr Hematol Oncol 2016;38:87-96.
  • 56. Gains JE, Bomanji JB, Fersht NL, Sullivan T, D’Souza D, Sullivan KP, Aldridge M, Waddington W, Gaze MN. 177Lu-DOTATATE molecular radiotherapy for childhood neuroblastoma. J Nucl Med 2011;52:1041-1047.
  • 57. Menda Y, O’Dorisio MS, Kao S, Khanna G, Michael S, Connolly M, Babich J, O’Dorisio T, Bushnell D, Madsen M. Phase I trial of 90Y-DOTATOC therapy in children and young adults with refractory solid tumors that express somatostatin receptors. J Nucl Med 2010;51:1524-1531.
  • 58. Sadowski SM, Neychev V, Millo C, Shih J, Nilubol N, Herscovitch P, Pacak K, Marx SJ, Kebebew E. Prospective Study of 68Ga-DOTATATE Positron Emission Tomography/Computed Tomography for Detecting Gastro-Entero-Pancreatic Neuroendocrine Tumors and Unknown Primary Sites. J Clin Oncol 2016;34: 588-596.
  • 59. Ludwig JA. Ewing sarcoma: historical perspectives, current state-ofthe-art, and opportunities for targeted therapy in the future. Curr Opin Oncol 2008;20:412-418.
  • 60. Bestic JM, Peterson JJ, Bancroft LW. Pediatric FDG PET/CT: Physiologic uptake, normal variants, and benign conditions [corrected]. Radiographics 2009; 29:1487-1500.
  • 61. Hartley AL, Birch JM, Blair V, Kelsey AM, Harris M, Jones PH. Patterns of cancer in the families of children with soft tissue sarcoma. Cancer 1993; 72:923-930.
  • 62. Eugene T, Corradini N, Carlier T, Dupas B, Leux C, Bodet-Milin C. 18F-FDG-PET/CT in initial staging and assessment of early response to chemotherapy of pediatric rhabdomyosarcomas. Nucl Med Commun 2012;33:1089-1095.
  • 63. Schäfer JF, Gatidis S, Schmidt H, Gückel B, Bezrukov I, Pfannenberg CA, Reimold M, Ebinger M, Fuchs J, Claussen CD, Schwenzer NF. Simultaneous whole-body PET/MR imaging in comparison to PET/CT in pediatric oncology: initial results. Radiology 2014;273:220-231.
  • 64. Rausch I, Quick HH, Cal-Gonzalez J, Sattler B, Boellaard R, Beyer T. Technical and instrumentational foundations of PET/MRI. Eur J Radiol 2017;94:3-13.
  • 65. Qi Z, Gates EL, O’Brien MM, Trout AT. Radiation dose reduction through combining positron emission tomography/computed tomography (PET/CT) and diagnostic CT in children and young adults with lymphoma. Pediatr Radiol 2018;48:196-203.
APA Bıçakcı N, Elli M (2021). 18Fluorine-fluorodeoxyglucose PET/CT Imaging in Childhood Malignancies. , 18 - 27. 10.4274/mirt.galenos.2020.64436
Chicago Bıçakcı Nilüfer,Elli Murat 18Fluorine-fluorodeoxyglucose PET/CT Imaging in Childhood Malignancies. (2021): 18 - 27. 10.4274/mirt.galenos.2020.64436
MLA Bıçakcı Nilüfer,Elli Murat 18Fluorine-fluorodeoxyglucose PET/CT Imaging in Childhood Malignancies. , 2021, ss.18 - 27. 10.4274/mirt.galenos.2020.64436
AMA Bıçakcı N,Elli M 18Fluorine-fluorodeoxyglucose PET/CT Imaging in Childhood Malignancies. . 2021; 18 - 27. 10.4274/mirt.galenos.2020.64436
Vancouver Bıçakcı N,Elli M 18Fluorine-fluorodeoxyglucose PET/CT Imaging in Childhood Malignancies. . 2021; 18 - 27. 10.4274/mirt.galenos.2020.64436
IEEE Bıçakcı N,Elli M "18Fluorine-fluorodeoxyglucose PET/CT Imaging in Childhood Malignancies." , ss.18 - 27, 2021. 10.4274/mirt.galenos.2020.64436
ISNAD Bıçakcı, Nilüfer - Elli, Murat. "18Fluorine-fluorodeoxyglucose PET/CT Imaging in Childhood Malignancies". (2021), 18-27. https://doi.org/10.4274/mirt.galenos.2020.64436
APA Bıçakcı N, Elli M (2021). 18Fluorine-fluorodeoxyglucose PET/CT Imaging in Childhood Malignancies. Molecular Imaging and Radionuclide Therapy, 30(1), 18 - 27. 10.4274/mirt.galenos.2020.64436
Chicago Bıçakcı Nilüfer,Elli Murat 18Fluorine-fluorodeoxyglucose PET/CT Imaging in Childhood Malignancies. Molecular Imaging and Radionuclide Therapy 30, no.1 (2021): 18 - 27. 10.4274/mirt.galenos.2020.64436
MLA Bıçakcı Nilüfer,Elli Murat 18Fluorine-fluorodeoxyglucose PET/CT Imaging in Childhood Malignancies. Molecular Imaging and Radionuclide Therapy, vol.30, no.1, 2021, ss.18 - 27. 10.4274/mirt.galenos.2020.64436
AMA Bıçakcı N,Elli M 18Fluorine-fluorodeoxyglucose PET/CT Imaging in Childhood Malignancies. Molecular Imaging and Radionuclide Therapy. 2021; 30(1): 18 - 27. 10.4274/mirt.galenos.2020.64436
Vancouver Bıçakcı N,Elli M 18Fluorine-fluorodeoxyglucose PET/CT Imaging in Childhood Malignancies. Molecular Imaging and Radionuclide Therapy. 2021; 30(1): 18 - 27. 10.4274/mirt.galenos.2020.64436
IEEE Bıçakcı N,Elli M "18Fluorine-fluorodeoxyglucose PET/CT Imaging in Childhood Malignancies." Molecular Imaging and Radionuclide Therapy, 30, ss.18 - 27, 2021. 10.4274/mirt.galenos.2020.64436
ISNAD Bıçakcı, Nilüfer - Elli, Murat. "18Fluorine-fluorodeoxyglucose PET/CT Imaging in Childhood Malignancies". Molecular Imaging and Radionuclide Therapy 30/1 (2021), 18-27. https://doi.org/10.4274/mirt.galenos.2020.64436