Yıl: 2021 Cilt: 8 Sayı: 1 Sayfa Aralığı: 162 - 168 Metin Dili: Türkçe DOI: 10.34087/cbusbed.776367 İndeks Tarihi: 20-05-2021

COVID-19’lu Hastalar İçin Mezenkimal Kök Hücre Tedavisi

Öz:
Çin’in Wuhan kentinde, 2019’un sonlarında ortaya çıkan yeni tip koronavirüs (SARS-CoV-2) enfeksiyonunun nedenolduğu COVID-19, Dünya Sağlık Örgütü (WHO) tarafından uluslararası bir halk sağlığı acil durumu olarakbelirtilmiştir ve felaket derecesi küresel "pandemi" olarak tanımlanmıştır. COVID-19 tipik olarak ateş ve solunumsemptomları ile ilişkilidir. Genellikle ciddi solunum sıkıntısı ve yüksek mortalite oranı taşıyan çoklu organ yetmezliğigelişir. İnflamasyon, pulmoner ödem ve aşırı reaktif bir immün tepki hipoksiye, akute respiratuvar distres sendromu(ARDS) ve akciğer hasarına yol açabilir. Mezenkimal kök hücreler (MKH'ler) güçlü ve geniş kapsamlıimmünomodülatör ve anti-inflamatuar aktivitelere sahiptir. Çalışmalar, MKH'lerin, akciğer hasarını önleme, iltihabıazaltma, immün tepkileri azaltma ve alveolar sıvının temizlenmesine yardımcı olduğunu göstermektedir. MKH’lerantiviral özelliklere sahiptir ve son yıllarda çeşitli viral enfeksiyonları tedavi etmede kullanılmıştır. COVID-19hastalarında bağışıklık sisteminin aşırı reaksiyonundan dolayı oluşan sitokin fırtınasının neden olduğu sistemikhasarın çok önemli olduğu görülmüştür. Bu yüzden, MKH'lerin, COVID-19’lu hastaların aşırı aktifleşmiş bağışıklıksistemlerini baskılayabileceği ve hastalığın tedavisinde etkili olabileceği düşünülmüştür. Güçlü immünmodülatörözelliğe sahip mezenkimal kök hücreler (MKH) tedavi amacıyla uygulanmaya başlanmış ve olumlu sonuçlar eldeedilmiştir. Bu derlemede, COVID-19 hastalarının immünolojik yanıtlarını iyileştirmek için mezenkimal kök hücretedavisi yaklaşımı ele aldık ve önerilen bu tedavinin yönlerini tartıştık.
Anahtar Kelime:

Mesenchymal Stem Cell Treatment for Patients with COVID-19

Öz:
The COVID-19, caused by the new type of coronavirus (SARS-CoV-2) infection that emerged in Wuhan, China in late 2019, has been registered as a public health emergency of international by the World Health Organization (WHO), and its harm degree is defined as a global “pandemic”. COVID-19 is typically associated with fever and respiratory symptoms. It usually develops severe respiratory distress and multi-organ failure which carry a high mortality rate. Inflammation, pulmonary edema and an over-reactive immune response can give rise to hypoxia, Acute respiratory distress syndrome (ARDS) and lung damage. Mesenchymal stem cells (MSCs) possess activities potent and extensive immunomodulatory and anti-inflammatory. Studies have demonstrated the MSC’s impressive capacity to inhibit lung damage, reduce inflammation, dampen immune responses and aid with alveolar fluid clearance. MSCs have antiviral properties and have been used in the treatment of various viral infections in the last years. Systemic damage caused by cytokine storm that occurs due to the overreaction of the immune system in patients with COVID-19 has been shown to be very important. Therefore, it was thought that MSCs could suppress overactivated immune systems of patients with COVID-19 and be effective in the treatment of the disease. Mesenchymal stem cells (MSCs) with strong immunomodulatory properties have been used for treatment and positive results have been obtained. In this rewiev, we considered this new approach to improve patient’s immunological responses to COVID-19 using MSCs and discussed the aspects of this proposed treatment.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Derleme Erişim Türü: Erişime Açık
  • 1. Bian, X, ve the COVID-19 Pathology Team, Autopsy of COVID-19 victims in China, National Science Review, 2020.
  • 2. Xu, Z, Shi, L, Wang, Y, Zhang, J, Huang, L, Zhang, C, ve ark., Pathological findings of COVID-19 associated with acute respiratory distress syndrome, The Lancet respiratory medicine, 2020, 8(4), 420- 422.
  • 3. Shi, Y, Su, J, ve ark., How mesenchymal stem cells interact with tissue immune responses, Trends in immunology, 2012, 33(3),136- 43.
  • 4. Harrell, C.R, Sadikot, R, ve ark., Mesenchymal Stem Cell-Based Therapy of Inflammatory Lung Diseases: Current Understanding and Future Perspectives, Stem cells international, 2019, 4236973.
  • 5. Krasnodembskaya, A, Song, Y, ve ark., Antibacterial effect of human mesenchymal stem cells is mediated in part from secretion of the antimicrobial peptide LL-37, Stem cells (Dayton, Ohio),2010, 28(12), 2229–2238.
  • 6. Khatri, M, Richardson, L.A, ve ark., Mesenchymal stem cell-derived extracellular vesicles attenuate influenza virus-induced acute lung injury in a pig model, Stem cell research & therapy, 2018, 9(1), 17.
  • 7. Hosseini, M, Yousefifard, M, ve ark., The Effect of Bone Marrow- Derived Mesenchymal Stem Cell Transplantation on Allodynia and Hyperalgesia in Neuropathic Animals: A Systematic Review with Meta-Analysis, Biology of blood and marrow transplantation : journal of the American Society for Blood and Marrow Transplantation, 2015, 21(9), 1537–1544.
  • 8. Rothan, H.A, Byrareddy, S.N., The epidemiology and pathogenesis of coronavirus disease (COVID-19) outbreak. Journal of autoimmunity, 2020, 109, 102433.
  • 9. Atluri, S, Manchikanti, L, Hirsch, JA, Expanded umbilical cord mesenchymal stem cells (UC-MSCs) as a therapeutic strategy in managing critically ill COVID-19 patients: The case for compassionate use. Pain Physician, 2020, 23, E71-E83.
  • 10. Chen, Y, Guo, Y, Pan, Y, Zhao, Z.J, Structure analysis of the receptor binding of 2019-nCoV, Biochemical and Biophysical Research Communications, 2020, 525(1), 135-140.
  • 11. Hoffmann, M, Kleine-Weber, H, ve ark., SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor, Cell, 2020, 181(2), 271-280.e8.
  • 12. Hoffmann, M, Kleine-Weber, H, Krüger, N, Müller, M, Drosten, C, Pöhlmann, S, The novel coronavirus 2019 (2019-nCoV) uses the SARS-coronavirus receptor ACE2 and the cellular protease TMPRSS2 for entry into target cells, bioRxiv, 2020.
  • 13. Hamming, I, Timens, W, ve ark., Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis, The Journal of pathology, 2004, 203(2), 631-637.
  • 14. Metcalfe, S.M, Mesenchymal stem cells and management of COVID- 19 pneumonia, Medicine in drug discovery, 2020, 5, 100019.
  • 15. Prompetchara, E, Ketloy, C, ve ark., Immune responses in COVID-19 and potential vaccines: Lessons learned from SARS and MERS epidemic, Asian Pacific journal of allergy and immunology, 2020, 38(1), 1-9.
  • 16. Huang, C, Wang, Y ve ark., Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China, Lancet, 2020, 395(10223), 497-506.
  • 17. Rogers, C.J, Harman, R.J, ve ark., Rationale for the clinical use of adipose-derived mesenchymal stem cells for COVID-19 patients, Journal of translational medicine, 2020, 18(1), 203.
  • 18. Golchin, A, Seyedjafari, E, ve ark., Mesenchymal Stem Cell Therapy for COVID-19: Present or Future. Stem cell reviews and reports, 2020, 16(3), 427–433.
  • 19. Liu, C, Yang, Y, ve ark., Viral architecture of SARS-CoV-2 with post- fusion spike revealed by Cryo-EM, bioRxiv, 2020.
  • 20. Caly, L, Druce, J, ve ark., Isolation and rapid sharing of the 2019 novel coronavirus (SARS-CoV-2) from the first patient diagnosed with COVID-19 in Australia, The Medical journal of Australia, 2020, 212(10), 459-462.
  • 21. Kakodkar, P, Kaka, N, ve ark., A Comprehensive Literature Review on the Clinical Presentation, and Management of the Pandemic Coronavirus Disease 2019 (COVID-19), Cureus, 2020,12(4), e7560.
  • 22. Zhou, P, Yang, X.L, ve ark., A pneumonia outbreak associated with a new coronavirus of probable bat origin, Nature, 2020, 579(7798), 270-273.
  • 23. Lu, R, Zhao, X, ve ark., Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding, Lancet, 2020, 395(10224), 565-574.
  • 24. Deng, X, Baker, S.C, Coronaviruses: Molecular Biology, Reference Module in Biomedical Sciences, 2014, B978-0-12-801238-3.02550- 2.
  • 25. Naqvi, A.A.T, Fatima, K, Mohammad, T, Fatima, U, Singh, I.K, Singh, A, ve ark., Insights into SARS-CoV-2 genome, structure, evolution, pathogenesis and therapies: Structural genomics approach, Biochimica et biophysica acta. Molecular basis of disease, 2020, 1866(10), 165878.
  • 26. Machhi, J, Herskovitz, J, Senan, A.M, ve ark., The Natural History, Pathobiology, and Clinical Manifestations of SARS-CoV-2 Infections. Journal of Neuroimmune Pharmacology, 2020, 15(3), 359-386.
  • 27. Zhang, W, Zhao, Y, Zhang, F, Wang, Q, Li, T, ve ark., The use of anti-inflammatory drugs in the treatment of people with severe coronavirus disease 2019 (COVID-19): The experience of clinical immuno logists from China, Clinical Immunology, 2020, 214, 108393.
  • 28. Naji, A, Eitoku, M, Favier, B, Deschaseaux, F, Rouas-Freiss, N, ve ark., Biological functions of mesenchymal stem cells and clinical implications, Cellular and Molecular Life Sciences, 2019, 76, 3323– 3348.
  • 29. Meisel, R, Zibert, A, Laryea, M, Göbel, U, Däubener, W, ve ark., Human bone marrow stromal cells inhibit allogeneic T-cell responses by indoleamine 2,3-dioxygenase-mediated tryptophan degradation, Blood, 2004, 103(12), 4619–4621.
  • 30. Sato, K, Ozaki, K, Oh, I, Meguro, A, Hatanaka, K, ve ark., Nitric oxide plays a critical role in suppression of T-cell proliferation by mesenchymal stem cells, Blood, 2007, 109(1), 228–234.
  • 31. Gardin, C, Ferroni, L, Bellin, G, Rubini, G, Barosio, S, ve ark., Therapeutic Potential of Autologous Adipose-Derived Stem Cells for the Treatment of Liver Disease. International journal of molecular sciences, 2018, 19(12), 4064.
  • 32. Mijiritsky, E, Gardin, C, Ferroni, L, Lacza, Z, Zavan, B, Albumin- impregnated bone granules modulate the interactions between mesenchymal stem cells and monocytes under in vitro inflammatory conditions, Materials Science and Engineering: C, 2020, 110, 110678.
  • 33. Di Nicola, M, Carlo-Stella, C, Magni, M, Milanesi, M, Longoni, ve ark., Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli, Blood, 2002, 99(10), 3838–3843.
  • 34. Xu, D.M, Yu, X.F, Zhang, D, Zhang, M.X, Zhou, J.F, ve ark., Mesenchymal stem cells differentially mediate regulatory T cells and conventional effector T cells to protect fully allogeneic islet grafts in mice, Diabetologia, 2012, 55(4), 1091–1102.
  • 35. Singer, N.G, Caplan, A.I. Mesenchymal stem cells: Mechanisms of inflammation. Annual . Review of . Pathology. 2011, 6, 457–478. 36. Glennie, S, Soeiro, I, Dyson, P.J, Lam, E.W, Dazzi, F, Bone marrow mesenchymal stem cells induce division arrest anergy of activated T cells, Blood, 2005, 105(7), 2821–2827.
  • 37. Aziz, J, Liao, G, Adams, Z, Rizk, M, Shorr, R, ve ark., Systematic review of controlled clinical studies using umbilical cord blood for regenerative therapy: Identifying barriers to assessing efficacy, Cytotherapy, 2019, 21(11), 1112–1121.
  • 38. Ahmadi, A. R, Chicco, M, Huang, J, Qi, L, Burdick, J, ve ark., Stem cells in burn wound healing: A systematic review of the literatüre, Burns, 2019, 45, 1014–1023.
  • 39. Pittenger, M.F, Discher, D.E, Péault, B.M, Phinney, D.G, Hare, J.M, ve ark., Mesenchymal stem cell perspective: cell biology to clinical progress, NPJ Regenerative medicine, 2019, 4, 22.
  • 40. Martin, I, Galipeau, J, Kessler, C, Le Blanc, K, Dazzi, F, Challenges for mesenchymal stromal cell therapies, Science Translational Medicine, 2019, 11(480), eaat2189.
  • 41. Golchin, A, Farahany, T.Z, Biological Products: Cellular Therapy and FDA Approved Products. Stem cell reviews and reports, 2019, 15(2), 166-175.
  • 42. Golchin, A, Farahany, T.Z, ve ark., The Clinical Trials of Mesenchymal Stem Cell Therapy in Skin Diseases: An Update and Concise Review, Current stem cell research & therapy, 2019, 14(1), 22-33.
  • 43. Mehta, P, McAuley, D.F, ve ark., COVID-19: consider cytokine storm syndromes and immunosuppression, Lancet (London, England), 2020, 395(10229), 1033-1034.
  • 44. Baksh, D, Yao, R, Tuan, R.S, Comparison of proliferative and multilineage differentiation potential of human mesenchymal stem cells derived from umbilical cord and bone marrow, Stem Cells, 2007, 25(6), 1384-92.
  • 45. Nagamura-Inoue T, He, H, Umbilical cord-derived mesenchymal stem cells: Their advantages and potential clinical utility, World Journal of Stem Cells, 2014, 6(2), 195-202.
  • 46. Isildar, B, Ozkan,S, Oncul, M, Baslar, Z, Kaleli, S, ve ark., Comparison of different cryopreservation protocols for human umbilical cord tissue as source of mesenchymal stem cells, Acta Histochemica, 2019, 121(3), 361-367.
  • 47. Leng, Z, Zhu, R, ve ark., Transplantation of ACE2- Mesenchymal Stem Cells Improves the Outcome of Patients with COVID-19 Pneumonia, Aging and disease, 2020, 11(2), 216-228.
  • 48. Liu, S, Peng, D, Qiu, H, Yang, K, Fu, Z, ve ark., Mesenchymal stem cells as a potential therapy for COVID-19, Stem Cell Research and Therapy, 2020, 11(1), 169.
  • 49. Liang, B, Chen, J, Li, T, Wu, H, Yang, W, ve ark., Clinical remission of a critically ill COVID-19 patient treated by human umbilical cord mesenchymal stem cells: A case report, Medicine (Baltimore), 2020, 99(31), e21429.
  • 50. Zhang, Y, Ding, J, Ren, S, Wang, W, Yang, Y, ve ark., Intravenous infusion of human umbilical cord Wharton's jelly-derived mesenchymal stem cells as a potential treatment for patients with COVID-19 pneumonia, Stem Cell Research and Therapy, 2020, 11(1):207.
APA DELİBAŞ Ö (2021). COVID-19’lu Hastalar İçin Mezenkimal Kök Hücre Tedavisi. , 162 - 168. 10.34087/cbusbed.776367
Chicago DELİBAŞ Özlem COVID-19’lu Hastalar İçin Mezenkimal Kök Hücre Tedavisi. (2021): 162 - 168. 10.34087/cbusbed.776367
MLA DELİBAŞ Özlem COVID-19’lu Hastalar İçin Mezenkimal Kök Hücre Tedavisi. , 2021, ss.162 - 168. 10.34087/cbusbed.776367
AMA DELİBAŞ Ö COVID-19’lu Hastalar İçin Mezenkimal Kök Hücre Tedavisi. . 2021; 162 - 168. 10.34087/cbusbed.776367
Vancouver DELİBAŞ Ö COVID-19’lu Hastalar İçin Mezenkimal Kök Hücre Tedavisi. . 2021; 162 - 168. 10.34087/cbusbed.776367
IEEE DELİBAŞ Ö "COVID-19’lu Hastalar İçin Mezenkimal Kök Hücre Tedavisi." , ss.162 - 168, 2021. 10.34087/cbusbed.776367
ISNAD DELİBAŞ, Özlem. "COVID-19’lu Hastalar İçin Mezenkimal Kök Hücre Tedavisi". (2021), 162-168. https://doi.org/10.34087/cbusbed.776367
APA DELİBAŞ Ö (2021). COVID-19’lu Hastalar İçin Mezenkimal Kök Hücre Tedavisi. Celal Bayar Üniversitesi Sağlık Bilimleri Enstitüsü Dergisi, 8(1), 162 - 168. 10.34087/cbusbed.776367
Chicago DELİBAŞ Özlem COVID-19’lu Hastalar İçin Mezenkimal Kök Hücre Tedavisi. Celal Bayar Üniversitesi Sağlık Bilimleri Enstitüsü Dergisi 8, no.1 (2021): 162 - 168. 10.34087/cbusbed.776367
MLA DELİBAŞ Özlem COVID-19’lu Hastalar İçin Mezenkimal Kök Hücre Tedavisi. Celal Bayar Üniversitesi Sağlık Bilimleri Enstitüsü Dergisi, vol.8, no.1, 2021, ss.162 - 168. 10.34087/cbusbed.776367
AMA DELİBAŞ Ö COVID-19’lu Hastalar İçin Mezenkimal Kök Hücre Tedavisi. Celal Bayar Üniversitesi Sağlık Bilimleri Enstitüsü Dergisi. 2021; 8(1): 162 - 168. 10.34087/cbusbed.776367
Vancouver DELİBAŞ Ö COVID-19’lu Hastalar İçin Mezenkimal Kök Hücre Tedavisi. Celal Bayar Üniversitesi Sağlık Bilimleri Enstitüsü Dergisi. 2021; 8(1): 162 - 168. 10.34087/cbusbed.776367
IEEE DELİBAŞ Ö "COVID-19’lu Hastalar İçin Mezenkimal Kök Hücre Tedavisi." Celal Bayar Üniversitesi Sağlık Bilimleri Enstitüsü Dergisi, 8, ss.162 - 168, 2021. 10.34087/cbusbed.776367
ISNAD DELİBAŞ, Özlem. "COVID-19’lu Hastalar İçin Mezenkimal Kök Hücre Tedavisi". Celal Bayar Üniversitesi Sağlık Bilimleri Enstitüsü Dergisi 8/1 (2021), 162-168. https://doi.org/10.34087/cbusbed.776367