Yıl: 2020 Cilt: 32 Sayı: 4 Sayfa Aralığı: 473 - 477 Metin Dili: İngilizce DOI: 10.7240/jeps.714481 İndeks Tarihi: 19-05-2021

Investigation of Nuclear Structures of Self-conjugate Zn, Ge, Se, Kr, Sr Nuclei

Öz:
The nuclear structure of the atomic nuclei can be theoretically investigated by using the nuclear shell model. Generally, a doubly closed-shell nucleus has been considered as inert core and the nucleons outside the core are taken into account in the calculation. It is assumed that the nucleons in the inert core do not move but each valence nucleon out of the core moves under an average potential created by the others. The self-conjugate (N=Z) medium mass nuclei region is one of the regions for the investigation of several phenomena because of the maximum spatial overlap of neutrons and protons. In this study, the structures of the medium mass N=Z nuclei have been analyzed in the scope of the nuclear shell model by using KSHELLcomputer code. In the calculations, doubly magic 56Ni were taken as core, and the 2p3/2, 1f5/2ve 2p1/2 single-particle orbits were used as valence orbits. Different two-body interactions (jun45and f5pvh) have been taken into account. The results have been compared with each other and the available values existing in the literature.
Anahtar Kelime:

Öz-eşlenik Zn, Ge, Se, Kr, Sr Çekirdeklerinin Nükleer Yapılarının İncelenmesi

Öz:
Atom çekirdeklerinin nükleer yapıları, nükleer kabuk modeli kullanılarak teorik olarak incelenebilir. Genel olarak, birçift-çift kapalı kabuk çekirdeği durağan kor (inert kor) çekirdek olarak kabul edilir ve bunun dışındaki nükleonlar hesaplamalarda dikkate alınır. Kor çekirdekteki nükleonların hareket etmediği, ancak kor dışındaki valans nükleonlarının, diğerleri tarafından yaratılan ortalama bir potansiyel altında hareket ettiği varsayılmaktadır. Öz-eşlenik (N=Z) orta ağırlığa sahip kütleli çekirdeklerin bölgesi, nötronların ve protonların azami uzaysal çakışması nedeniyle, bazı nükleer olguların araştırılması için uygunbölgelerden birisidir. Bu çalışmada, orta ağırlıktaki N=Z çekirdeklerinin nükleer yapı özellikleri, nükleer kabuk modeli kapsamında KSHELLbilgisayar kodu kullanılarak araştırılmıştır. Hesaplamalarda kor çekirdek olarak çift sihirli 56Ni ele alınmış ve valans orbitalleri olarak 2p3/2, 1f5/2ve 2p1/2 tek parçacık seviyeleri kullanılmıştır. Farklı iki cisim etkileşmeleri (jun45ve f5pvh) ele alınmıştır. Sonuçlar birbirleriyle ve literatürdeki mevcut değerlerle karşılaştırılmıştır.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • [1] Bohr, A . and Mottelson, B. R.: Nuclear Structure. (1969). Vol. 1. W.A. Benjamin, New York.
  • [2] Greiner, W. and Maruhn J., (1996). Nuclear Models. Springer, Berlin.
  • [3] Bayram, T. and Yılmaz, A. H., (2013). Table of Ground State Properties of Nuclei in the RMF Model. Mod. Phys. Lett. A, 28(16), 1350068.
  • [4] Bayram, T., Akkoyun, S. and Şentürk, Ş., (2018). Adjustment of Non-linear Interaction Parameters for Relativistic Mean Field Approach by Using Artificial Neural Networks. Phys. At. Nucl., 81, 288-295.
  • [5] Stoitsov, M. V., Dobaczewski, J., Nazarewicz, W., Pittel, S. and Dean, D. J., (2003). Systematic study of deformed nuclei at the drip lines and beyond. Phys. Rev. C, 68, 054312.
  • [6] Jenkins, D.G., et al., (2002). T=0 and T=1 states in the odd-odd N=Z nucleus, 70Br. Phys. Rev. C, 65, 064307.
  • [7] Mayer, M. G., (1949). On closed shells in nuclei. II. Phys. Rev., 75, 1969-1970.
  • [8] Haxel, O., Jensen, J. H. D. and Suess, H. E., (1949). On the Magic Numbers in Nuclear Structure. Phys. Rev. 75(11), 1766.
  • [9] Mayer, M. G., (1948). On Closed Shells in Nuclei. Phys. Rev., 74, 235.
  • [10] Mayer, M. G., (1950). Nuclear Configurations in the Spin-Orbit Coupling Model. I. Empirical Evidence. Phys. Rev., 78, 16.
  • [11] Talmi, I., (2005). 55 Years Of The Shell Model: A Challenge To Nuclear Many-Body Theory. Int. J. Mod. Phys. E, 14, 821-844.
  • [12] Caurier, E., Martínez-Pinedo, G., Nowacki, F., Poves, A. and Zuker, A. P., (2005). The shell model as a unified view of nuclear structure. Rev. Mod. Phy., 77(2), 427-488.
  • [13] Brown, B. A., (2001). The Nuclear Shell Model toward the Drip Lines. Prog. Part. Nucl. Phys., 47, 517-599.
  • [14] Laouet, N., Benrachi, F., Guerraiche, H. and Benhizia, K, (2019). Study of the shell evolution effect on the nuclei around the 78Ni core structure. Bitlis Eren University Journal of Science and Technology, 9, 109–113.
  • [15] Shimizu, N., (2013). Nuclear shell-model code for massive parallel computation, KSHELL. arXiv:1310.5431 [nucl-th].
  • [16] Brown, B. A. and Rae, W. D. M., (2014). The Shell-Model Code NuShellX@MSU. Nucl. Data Sheets. Vol. 120, pp. 115-118.
  • [17] REDSTICK, http://www.phys.lsu.edu/faculty/cjohnson/redstick. html
  • [18] Calvin, W. J., Erich Ormand, W, McElvain, K. S. and Shan, H., (2018). BIGSTICK: A flexible configuration-interaction shell-model code. arXiv:1801.08432v1 [physics.comp-ph].
  • [19] Caurier, E. and Nowacki, F., (1999). Present Status of Shell Model Techniques. Acta Phys. Pol. B, 30, 705-714.
  • [20] Brown, B.A., et al., Oxbash for Windows. MSU_NSCL report number 1289.
  • [21] Nabi, J.-U., Böyükata, M., (2016). β-Decay halflives and nuclear structure of exotic proton-rich waiting point nuclei under rp-process. Nucl. Phys. A, 947,182–202.
  • [22] Yamagami, M., Matsuyanagi, K., Matsuo, M., (2001). Symmetry-unrestricted Skyrme–Hartree– Fock–Bogoliubov calculations for exotic shapes in N=Z nuclei from 64Ge to 84Mo. Nucl. Phys. A, 693, 579–602.
  • [23] Kaneko, K., Hasegawa, M. and Mizusaki, T., (2014). Shape transition and oblate-prolate coexistence in N=Z fpg-shell nuclei. Phy. Rev. C, 70, 051301.
  • [24] Drumev, K., (2018). Shell-model calculations for upper pf-shell nuclei with an effective interaction. EPJ Web of Conferences, 194, 01006.
  • [25] Honma, M, Otsuka, T., Mizusaki, T., and Jensen M. H-., (2009). New effective interaction for f5pg9- shell nuclei. Phys. Rev. C, 80, 064323.
  • [26] Van Hienen, J.F.A., et al., (1976). Shell-Model Calculations For The Zinc Isotopes. Nucl. Phys. A, 269, 159-188.
  • [27] Kinsey, R.R., et al., (1996). The NUDAT/PCNUDAT Program for Nuclear Data, paper submitted to the 9th International Symposium of Capture Gamma-Ray Spectroscopy and Related Topics, Budapest, Hungary, October 1996. Data extracted from the NUDAT database, 2.8 (01.April.2020).
  • [28] Pritychenko, B., et al., (2016). Tables of E2 transition probabilities from the first 2+ states in even–even nuclei. At. Data. Nucl. Data Tables, 107, 1–139.
  • [29] Raman, S., N, Nestor, JR C. W. and Tikkanen, P., (2001). Transition probability from the ground to the first-excited 2+ state of even–even nuclides. At. Data. Nucl. Data Tables, 78, 1–128.
  • [30] Takami, S., Yabana, K. and Matsuo, M., (1998). Tetrahedral and triangular deformations of Z=N nuclei in mass region A∼60–80. Phys. Lett. B, 431, 242-248.
APA Akkoyun S, BAYRAM T (2020). Investigation of Nuclear Structures of Self-conjugate Zn, Ge, Se, Kr, Sr Nuclei. , 473 - 477. 10.7240/jeps.714481
Chicago Akkoyun Serkan,BAYRAM Tuncay Investigation of Nuclear Structures of Self-conjugate Zn, Ge, Se, Kr, Sr Nuclei. (2020): 473 - 477. 10.7240/jeps.714481
MLA Akkoyun Serkan,BAYRAM Tuncay Investigation of Nuclear Structures of Self-conjugate Zn, Ge, Se, Kr, Sr Nuclei. , 2020, ss.473 - 477. 10.7240/jeps.714481
AMA Akkoyun S,BAYRAM T Investigation of Nuclear Structures of Self-conjugate Zn, Ge, Se, Kr, Sr Nuclei. . 2020; 473 - 477. 10.7240/jeps.714481
Vancouver Akkoyun S,BAYRAM T Investigation of Nuclear Structures of Self-conjugate Zn, Ge, Se, Kr, Sr Nuclei. . 2020; 473 - 477. 10.7240/jeps.714481
IEEE Akkoyun S,BAYRAM T "Investigation of Nuclear Structures of Self-conjugate Zn, Ge, Se, Kr, Sr Nuclei." , ss.473 - 477, 2020. 10.7240/jeps.714481
ISNAD Akkoyun, Serkan - BAYRAM, Tuncay. "Investigation of Nuclear Structures of Self-conjugate Zn, Ge, Se, Kr, Sr Nuclei". (2020), 473-477. https://doi.org/10.7240/jeps.714481
APA Akkoyun S, BAYRAM T (2020). Investigation of Nuclear Structures of Self-conjugate Zn, Ge, Se, Kr, Sr Nuclei. International journal of advances in engineering and pure sciences (Online), 32(4), 473 - 477. 10.7240/jeps.714481
Chicago Akkoyun Serkan,BAYRAM Tuncay Investigation of Nuclear Structures of Self-conjugate Zn, Ge, Se, Kr, Sr Nuclei. International journal of advances in engineering and pure sciences (Online) 32, no.4 (2020): 473 - 477. 10.7240/jeps.714481
MLA Akkoyun Serkan,BAYRAM Tuncay Investigation of Nuclear Structures of Self-conjugate Zn, Ge, Se, Kr, Sr Nuclei. International journal of advances in engineering and pure sciences (Online), vol.32, no.4, 2020, ss.473 - 477. 10.7240/jeps.714481
AMA Akkoyun S,BAYRAM T Investigation of Nuclear Structures of Self-conjugate Zn, Ge, Se, Kr, Sr Nuclei. International journal of advances in engineering and pure sciences (Online). 2020; 32(4): 473 - 477. 10.7240/jeps.714481
Vancouver Akkoyun S,BAYRAM T Investigation of Nuclear Structures of Self-conjugate Zn, Ge, Se, Kr, Sr Nuclei. International journal of advances in engineering and pure sciences (Online). 2020; 32(4): 473 - 477. 10.7240/jeps.714481
IEEE Akkoyun S,BAYRAM T "Investigation of Nuclear Structures of Self-conjugate Zn, Ge, Se, Kr, Sr Nuclei." International journal of advances in engineering and pure sciences (Online), 32, ss.473 - 477, 2020. 10.7240/jeps.714481
ISNAD Akkoyun, Serkan - BAYRAM, Tuncay. "Investigation of Nuclear Structures of Self-conjugate Zn, Ge, Se, Kr, Sr Nuclei". International journal of advances in engineering and pure sciences (Online) 32/4 (2020), 473-477. https://doi.org/10.7240/jeps.714481