Yıl: 2020 Cilt: 8 Sayı: 17 Sayfa Aralığı: 270 - 283 Metin Dili: Türkçe DOI: 10.7816/nesne-08-17-08 İndeks Tarihi: 20-06-2021

İşlevsel Özelleşmeye Yeni Bir Bakış: Nöronal Saatler

Öz:
Bilişsel psikoloji ve sinirbilimin temel kuramlarından biri olan işlevsel özelleşme, beyin yapılarının belirli duyusal, duygusal, bilişsel ve motor görevleri yerine getirmek üzere oluştuğunu belirtir. Buna göre serebellum beynimizin hassas motor koordinasyon, basal ganglia istemsel hareket ve motivasyon, hipokampus ise deklaratif bellek ve mekânsal yön bulma merkezidir. Genel hatlarıyla geçerliliğini koruyan bu yaklaşım, her bir beyin yapısının katkı sunduğu diğer işlevler göz önünde bulundurulduğunda eksik kalmaktadır. Sinirbilimde özellikle son yıllarda, beyin bölgelerinin kendilerine atfedilen esas görevleri dışındaki işlevlerini ortaya çıkaran detaylı çalışmalar yapılmaktadır. Klasik işlevsel özelleşme anlayışının ötesine geçen bu çalışmalar ile beyin bölgeleri, birden çok işlevde rol alabilmelerini sağlayan hesaplama kabiliyetleri üzerinden değerlendirilmeye başlanmıştır. Bu anlayışa göre, esasen bir dizilim üreteci olan beynimizdeki birçok yapı, farklı zihinsel ve davranışsal süreçlere katkı sunabilen birer zamansal düzenleme makinesi veya nöronal saat olarak çalışır. Bu derleme, sinirbilime gittikçe egemen olan bu yeni paradigmanın tarihsel gelişimini ve temel çalışma ilkelerini incelemektedir. Nöronal saat olgusunun temelinde yatan beyin salınımları, nöronal hesaplamalara sağladıkları zamansal çerçeve bakımından ele alınmaktadır. Farklı frekans bantlarında beyin salınımlarının egemen olduğu serebellum, basal ganglia ve hipokampus, farklı zamansal çözünürlük gerektiren çeşitli işlevler için genel çözümler üreten nöronal saatler olarak incelenmektedir.
Anahtar Kelime:

A New Look At Functional Specialization: Neuronal Clocks

Öz:
Functional specialization, a core theory in neuroscience, states that brain structures have emerged to carry outspecific sensory, affective, cognitive and motor functions. For instance, the cerebellum, basal ganglia andhippocampus respectively regulate fine motor coordination, voluntary action and motivation, and declarativememory and navigation. This generally-accepted approach provides only a partial explanation when we consider allthe other functions that require these brain structures. Neuroscientific research has growingly focused on these otherfunctions of individual brain regions in recent years. Going beyond a classical understanding of functionalspecialization, brain regions are now studied concerning their computational capabilities that allow them tocontribute to several different tasks. According to this view, subregions of the brain constitute temporal organizationmachines, or neuronal clocks, that contribute to various cognitive and behavioral processes. This review portrays thehistorical foundations and working principles of this new paradigm increasingly dominating contemporaryneuroscience. Brain oscillations that underlie the concept of neuronal clock are studied with regards to the temporalframework they provide for neuronal computations. The cerebellum, basal ganglia and hippocampus, dominated byoscillations at different frequency ranges, are examined as neuronal clocks that provide generic solutions for variousfunctions requiring different temporal resolutions.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Derleme Erişim Türü: Erişime Açık
  • Anderson, M. L. (2010). Neural reuse: a fundamental organizational principle of the brain. The Behavioral and brain sciences, 33(4), 245–313. doi:10.1017/S0140525X10000853
  • Andres, D. S. ve Darbin, O. (2018). Complex Dynamics in the Basal Ganglia: Health and Disease Beyond the Motor System. The Journal of neuropsychiatry and clinical neurosciences, 30(2), 101–114. doi:10.1176/appi.neuropsych.17020039
  • Ashe, J. ve Bushara, K. (2014). The olivo-cerebellar system as a neural clock. Advances in experimental medicine and biology, 829, 155–165. doi:10.1007/978-1-4939-1782-2_9
  • Bangasser, D. A., Waxler, D. E., Santollo, J. ve Shors, T. J. (2006). Trace conditioning and the hippocampus: the importance of contiguity. The Journal of neuroscience : the official journal of the Society for Neuroscience, 26(34), 8702–8706. doi:10.1523/JNEUROSCI.1742-06.2006
  • Barrett, H. C. ve Kurzban, R. (2006). Modularity in cognition: framing the debate. Psychological review, 113(3), 628–647. doi:10.1037/0033-295X.113.3.628
  • Beylin, A. V, Gandhi, C. C., Wood, G. E., Talk, A. C., Matzel, L. D. ve Shors, T. J. (2001). The role of the hippocampus in trace conditioning: temporal discontinuity or task difficulty? Neurobiology of learning and memory, 76(3), 447–461. doi:10.1006/nlme.2001.4039
  • Bodranghien, F., Bastian, A., Casali, C., Hallett, M., Louis, E. D., Manto, M., … van Dun, K. (2016). Consensus Paper: Revisiting the Symptoms and Signs of Cerebellar Syndrome. Cerebellum (London, England), 15(3), 369–391. doi:10.1007/s12311-015-0687-3
  • Buzsaki, G. (2010). Neural syntax: cell assemblies, synapsembles, and readers. Neuron, 68(3), 362–385. doi:10.1016/j.neuron.2010.09.023
  • Buzsáki, G. (2006). Rhythms of the brain. Rhythms of the brain. New York, NY, US: Oxford University Press. doi:10.1093/acprof:oso/9780195301069.001.0001
  • Buzsaki, G. ve Llinas, R. (2017). Space and time in the brain. Science (New York, N.Y.), 358(6362), 482– 485. doi:10.1126/science.aan8869
  • Buzsaki, G. ve Moser, E. I. (2013). Memory, navigation and theta rhythm in the hippocampal-entorhinal system. Nature neuroscience, 16(2), 130–138. doi:10.1038/nn.3304
  • Buzsaki, G. ve Tingley, D. (2018). Space and Time: The Hippocampus as a Sequence Generator. Trends in cognitive sciences, 22(10), 853–869. doi:10.1016/j.tics.2018.07.006
  • Buzsaki, G. ve Watson, B. O. (2012). Brain rhythms and neural syntax: implications for efficient coding of cognitive content and neuropsychiatric disease. Dialogues in clinical neuroscience, 14(4), 345–367.
  • Chudasama, Y. ve Robbins, T. W. (2006). Functions of frontostriatal systems in cognition: comparative neuropsychopharmacological studies in rats, monkeys and humans. Biological psychology, 73(1), 19–38. doi:10.1016/j.biopsycho.2006.01.005
  • Clark, R. E. ve Thompson, R. F. (2009). Procedural Learning: Classical Conditioning. L. R. B. T.-E. of N. Squire (Ed.), (ss. 1097–1105). Oxford: Academic Press. doi:https://doi.org/10.1016/B978- 008045046-9.00780-4
  • Coltheart. (1999). Modularity and cognition. Trends in cognitive sciences, 3(3), 115–120. doi:10.1016/s1364-6613(99)01289-9
  • Cope, T. E., Grube, M., Singh, B., Burn, D. J. ve Griffiths, T. D. (2014). The basal ganglia in perceptual timing: timing performance in Multiple System Atrophy and Huntington’s disease. Neuropsychologia, 52(100), 73–81. doi:10.1016/j.neuropsychologia.2013.09.039
  • D’Angelo, E. ve De Zeeuw, C. I. (2009). Timing and plasticity in the cerebellum: focus on the granular layer. Trends in Neurosciences, 32(1), 30–40. doi:https://doi.org/10.1016/j.tins.2008.09.007
  • Damasio, A. R. (1983). Language and the basal ganglia. Trends in Neurosciences, 6, 442–443. doi:https://doi.org/10.1016/0166-2236(83)90213-8
  • Dragoi, G. ve Buzsaki, G. (2006). Temporal encoding of place sequences by hippocampal cell assemblies. Neuron, 50(1), 145–157. doi:10.1016/j.neuron.2006.02.023
  • Eccles, J. C., Ito, M. ve Szentágothai, J. (1967). The cerebellum as a neuronal machine. The cerebellum as a neuronal machine. Oxford, England: Springer-Verlag. doi:10.1007/978-3-662-13147-3
  • Eichenbaum, H. (2014). Time cells in the hippocampus: a new dimension for mapping memories. Nature Reviews Neuroscience, 15(11), 732–744. doi:10.1038/nrn3827
  • Florio, T. M., Scarnati, E., Rosa, I., Di Censo, D., Ranieri, B., Cimini, A., … Alecci, M. (2018). The Basal Ganglia: More than just a switching device. CNS neuroscience & therapeutics, 24(8), 677–684. doi:10.1111/cns.12987
  • Flourens, P. (1824). Recheres expérimentales sur les propriétés et les fonctions du système nerveux dans les animaux vertébrés. The human brain and spinal cord. Paris: Crevot.
  • Fodor, J. A. (1983). The Modularity of Mind (C. 94). MIT Press.
  • Fries, P. (2005). A mechanism for cognitive dynamics: neuronal communication through neuronal coherence. Trends in cognitive sciences, 9(10), 474–480. doi:10.1016/j.tics.2005.08.011
  • Gage, N. ve Hickok, G. (2005). Multiregional cell assemblies, temporal binding and the representation of conceptual knowledge in cortex: a modern theory by a “classical” neurologist, Carl Wernicke. Cortex; a journal devoted to the study of the nervous system and behavior, 41(6), 823–832. doi:10.1016/s0010-9452(08)70301-0
  • Graybiel, A. M. (1997). The Basal Ganglia and Cognitive Pattern Generators. Schizophrenia Bulletin, 23(3), 459–469. doi:10.1093/schbul/23.3.459
  • Groenewegen, H. J. (2003). The basal ganglia and motor control. Neural plasticity, 10(1–2), 107–120. doi:10.1155/NP.2003.107
  • Haber, S. N., Adler, A. ve Bergman, H. (2012). Chapter 20 - The Basal Ganglia. J. K. Mai ve G. B. T.-T. H. N. S. (Third E. Paxinos (Ed.), (ss. 678–738). San Diego: Academic Press. doi:https://doi.org/10.1016/B978-0-12-374236-0.10020-3
  • Haider, B. ve McCormick, D. A. (2009). Rapid neocortical dynamics: cellular and network mechanisms. Neuron, 62(2), 171-189. doi:10.1016/j.neuron.2009.04.008
  • Hastings, M. H., Maywood, E. S. ve Brancaccio, M. (2018). Generation of circadian rhythms in the suprachiasmatic nucleus. Nature reviews. Neuroscience, 19(8), 453–469. doi:10.1038/s41583-018- 0026-z
  • Henry, F. G. (1999). Anti-Darwinism in France: science and the myth of nation. Nineteenth-century French studies, 27(3–4), 290–304.
  • Ito, M. (2006). Cerebellar circuitry as a neuronal machine. Progress in neurobiology, 78(3–5), 272–303. doi:10.1016/j.pneurobio.2006.02.006
  • Ivry, R B. (1996). The representation of temporal information in perception and motor control. Current Opinion in Neurobiology, 6(6), 851–857. doi:10.1016/S0959-4388(96)80037-7
  • Ivry, R B ve Keele, S. W. (1989). Timing functions of the cerebellum. Journal of Cognitive Neuroscience, 1(2), 136–152. doi:10.1162/jocn.1989.1.2.136
  • Ivry, Richard B, Spencer, R. M., Zelaznik, H. N. ve Diedrichsen, J. (2002). The cerebellum and event timing. Annals of the New York Academy of Sciences, 978, 302–317. doi:10.1111/j.1749- 6632.2002.tb07576.x
  • Jahanshahi, M., Jones, C. R. G., Dirnberger, G. ve Frith, C. D. (2006). The substantia nigra pars compacta and temporal processing. Journal of Neuroscience, 26(47), 12266–12273. doi:10.1523/JNEUROSCI.2540-06.2006
  • Jones, C. R. G., Malone, T. J. L., Dirnberger, G., Edwards, M. ve Jahanshahi, M. (2008). Basal ganglia, dopamine and temporal processing: performance on three timing tasks on and off medication in Parkinson’s disease. Brain and cognition, 68(1), 30–41. doi:10.1016/j.bandc.2008.02.121
  • Kazantsev, V. B., Nekorkin, V. I., Makarenko, V. I. ve Llinás, R. (2004). Self-referential phase reset based on inferior olive oscillator dynamics. Proceedings of the National Academy of Sciences, 101(52), 18183 LP – 18188. doi:10.1073/pnas.0407900101
  • Keele, S. W. ve Ivry, R. (1990). Does the cerebellum provide a common computation for diverse tasks? A timing hypothesis. Annals of the New York Academy of Sciences, 608, 111–179. doi:10.1111/j.1749- 6632.1990.tb48897.x
  • Khilkevich, A., Zambrano, J., Richards, M.-M. ve Mauk, M. D. (2018). Cerebellar implementation of movement sequences through feedback. eLife, 7. doi:10.7554/eLife.37443
  • Knecht, S., Drager, B., Deppe, M., Bobe, L., Lohmann, H., Floel, A., … Henningsen, H. (2000). Handedness and hemispheric language dominance in healthy humans. Brain : a journal of neurology, 123 Pt 12, 2512–2518. doi:10.1093/brain/123.12.2512
  • Kotz, S. A., Schwartze, M. ve Schmidt-Kassow, M. (2009). Non-motor basal ganglia functions: A review and proposal for a model of sensory predictability in auditory language perception. Cortex, 45(8), 982–990. doi:https://doi.org/10.1016/j.cortex.2009.02.010
  • Lebow, M. A. ve Chen, A. (2016). Overshadowed by the amygdala: the bed nucleus of the stria terminalis emerges as key to psychiatric disorders. Molecular psychiatry, 21(4), 450–463. doi:10.1038/mp.2016.1
  • LeDoux, J. E. (2000). Emotion circuits in the brain. Annual review of neuroscience, 23, 155–184. doi:10.1146/annurev.neuro.23.1.155
  • Lisman, J. (2005). The theta/gamma discrete phase code occuring during the hippocampal phase precession may be a more general brain coding scheme. Hippocampus, 15(7), 913–922. doi:10.1002/hipo.20121
  • Lisman, J. E. ve Jensen, O. (2013). The θ-γ neural code. Neuron, 77(6), 1002–1016. doi:10.1016/j.neuron.2013.03.007
  • Llinas, R. (2014). The olivo-cerebellar system: a key to understanding the functional significance of intrinsic oscillatory brain properties . Frontiers in Neural Circuits . https://www.frontiersin.org/article/10.3389/fncir.2013.00096 adresinden erişildi.
  • Lusk, N. A., Petter, E. A., MacDonald, C. J. ve Meck, W. H. (2016). Cerebellar, hippocampal, and striatal time cells. Current Opinion in Behavioral Sciences, 8, 186–192. doi:https://doi.org/10.1016/j.cobeha.2016.02.020
  • Mahon, B. Z. ve Cantlon, J. F. (2011). The specialization of function: cognitive and neural perspectives. Cognitive neuropsychology, 28(3–4), 147–155. doi:10.1080/02643294.2011.633504
  • Marien, P., Ackermann, H., Adamaszek, M., Barwood, C. H. S., Beaton, A., Desmond, J., … Ziegler, W. (2014). Consensus paper: Language and the cerebellum: an ongoing enigma. Cerebellum (London, England), 13(3), 386–410. doi:10.1007/s12311-013-0540-5
  • Martinu, K. ve Monchi, O. (2013). Cortico-basal ganglia and cortico-cerebellar circuits in Parkinson’s disease: Pathophysiology or compensation? Behavioral Neuroscience. Monchi, Oury: Centre de recherche de l’Institut universitaire de gériatrie de Montréal, 4545 Queen-Mary Street, Room 6804, Montreal, PQ, Canada, H3W 1W5, oury.monchi@umontreal.ca: American Psychological Association. doi:10.1037/a0031226
  • Merker, B. (2007). Consciousness without a cerebral cortex: a challenge for neuroscience and medicine. The Behavioral and brain sciences, 30(1), 63–134. doi:10.1017/S0140525X07000891
  • Middleton, S. J., Racca, C., Cunningham, M. O., Traub, R. D., Monyer, H., Knöpfel, T., … Whittington, M. A. (2008). High-frequency network oscillations in cerebellar cortex. Neuron, 58(5), 763–774. doi:10.1016/j.neuron.2008.03.030
  • Moreno-Rius, J. (2018). The cerebellum in fear and anxiety-related disorders. Progress in neuro psychopharmacology & biological psychiatry, 85, 23–32. doi:10.1016/j.pnpbp.2018.04.002
  • Nadeau, S. E. ve Crosson, B. (1997). Subcortical aphasia. Brain and language, 58(3), 323–355. doi:10.1006/brln.1997.1707
  • O’Keefe, J. ve Dostrovsky, J. (1971). The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. Brain research, 34(1), 171–175. doi:10.1016/0006- 8993(71)90358-1
  • Ohyama, T., Nores, W. L., Murphy, M. ve Mauk, M. D. (2003). What the cerebellum computes. Trends in Neurosciences, 26(4), 222–227. doi:https://doi.org/10.1016/S0166-2236(03)00054-7
  • Packard, M. G. ve Knowlton, B. J. (2002). Learning and Memory Functions of the Basal Ganglia. Annual Review of Neuroscience, 25(1), 563–593. doi:10.1146/annurev.neuro.25.112701.142937
  • Palmer, S. J., Ng, B., Abugharbieh, R., Eigenraam, L. ve McKeown, M. J. (2009). Motor reserve and novel area recruitment: amplitude and spatial characteristics of compensation in Parkinson’s disease. European Journal of Neuroscience, 29(11), 2187–2196. doi:10.1111/j.1460-9568.2009.06753.x
  • Park, H.-J. ve Friston, K. (2013). Structural and functional brain networks: from connections to cognition. Science (New York, N.Y.), 342(6158), 1238411. doi:10.1126/science.1238411
  • Parker Jones, O., Alfaro-Almagro, F. ve Jbabdi, S. (2018). An empirical, 21st century evaluation of phrenology. Cortex, 106, 26–35. doi:https://doi.org/10.1016/j.cortex.2018.04.011
  • Quinn, J. J., Oommen, S. S., Morrison, G. E. ve Fanselow, M. S. (2002). Post-training excitotoxic lesions of the dorsal hippocampus attenuate forward trace, backward trace, and delay fear conditioning in a temporally specific manner. Hippocampus, 12(4), 495–504. doi:10.1002/hipo.10029
  • Schmahmann, J. D. (2019). The cerebellum and cognition. Neuroscience letters, 688, 62–75. doi:10.1016/j.neulet.2018.07.005
  • Shadmehr, R. (2018). How the cerebellum learns to build a sequence. eLife, 7, e40660. doi:10.7554/eLife.40660
  • Silver, R. A. (2010). Neuronal arithmetic. Nature reviews. Neuroscience, 11(7), 474–489. doi:10.1038/nrn2864
  • Simpson, D. (2005). Phrenology and the neurosciences: contributions of F. J. Gall and J. G. Spurzheim. ANZ journal of surgery, 75(6), 475–482. doi:10.1111/j.1445-2197.2005.03426.x
  • Smith, J. G., Harper, D. N., Gittings, D. ve Abernethy, D. (2007). The effect of Parkinson’s disease on time estimation as a function of stimulus duration range and modality. Brain and Cognition, 64(2), 130– 143. doi:10.1016/j.bandc.2007.01.005
  • Smythe, J. W., Colom, L. V ve Bland, B. H. (1992). The extrinsic modulation of hippocampal theta depends on the coactivation of cholinergic and GABA-ergic medial septal inputs. Neuroscience and biobehavioral reviews, 16(3), 289–308. doi:10.1016/s0149-7634(05)80203-9
  • Stoodley, C. J. ve Schmahmann, J. D. (2009). Functional topography in the human cerebellum: a meta analysis of neuroimaging studies. NeuroImage, 44(2), 489–501. doi:10.1016/j.neuroimage.2008.08.039
  • Strata, P. (2015). The emotional cerebellum. Cerebellum (London, England), 14(5), 570–577. doi:10.1007/s12311-015-0649-9
  • Strick, P. L., Dum, R. P. ve Fiez, J. A. (2009). Cerebellum and nonmotor function. Annual review of neuroscience, 32, 413–434. doi:10.1146/annurev.neuro.31.060407.125606
  • Suvrathan, A., Payne, H. L. ve Raymond, J. L. (2016). Timing Rules for Synaptic Plasticity Matched to Behavioral Function. Neuron, 92(5), 959–967. doi:10.1016/j.neuron.2016.10.022
  • Tataroǧlu, Ö., Aksoy, A., Yilmaz, A. ve Canbeyli, R. (2004). Effect of lesioning the suprachiasmatic nuclei on behavioral despair in rats. Brain Research, 1001(1–2), 118–124. doi:10.1016/j.brainres.2003.11.063
  • Tsao, A., Sugar, J., Lu, L., Wang, C., Knierim, J. J., Moser, M.-B. ve Moser, E. I. (2018). Integrating time from experience in the lateral entorhinal cortex. Nature, 561(7721), 57–62. doi:10.1038/s41586-018- 0459-6
  • Turi, Z., Alekseichuk, I. ve Paulus, W. (2018). On ways to overcome the magical capacity limit of working memory. PLoS biology, 16(4), e2005867–e2005867. doi:10.1371/journal.pbio.2005867
  • Ünal, G. (2019). The Cortico-hippocampal Circuit: The Brain’s Center for Mapping and Declarative Memory. J Ankara Univ Fac Med, 72, 13–23.
  • Unal, G., Apergis-Schoute, J. ve Pare, D. (2012). Associative properties of the perirhinal network. Cerebral cortex (New York, N.Y. : 1991), 22(6), 1318–1332. doi:10.1093/cercor/bhr212
  • Unal, G., Crump, M. G., Viney, T. J., Eltes, T., Katona, L., Klausberger, T. ve Somogyi, P. (2018). Spatio temporal specialization of GABAergic septo-hippocampal neurons for rhythmic network activity. Brain structure & function, 223(5), 2409–2432. doi:10.1007/s00429-018-1626-0
  • Unal, G., Joshi, A., Viney, T. J., Kis, V. ve Somogyi, P. (2015). Synaptic Targets of Medial Septal Projections in the Hippocampus and Extrahippocampal Cortices of the Mouse. The Journal of neuroscience : the official journal of the Society for Neuroscience, 35(48), 15812–15826. doi:10.1523/JNEUROSCI.2639-15.2015
  • Unal, G., Pare, J.-F., Smith, Y. ve Pare, D. (2013). Differential connectivity of short- vs. long-range extrinsic and intrinsic cortical inputs to perirhinal neurons. The Journal of comparative neurology, 521(11), 2538–2550. doi:10.1002/cne.23297
  • Wang, S. S.-H., Kloth, A. D. ve Badura, A. (2014). The cerebellum, sensitive periods, and autism. Neuron, 83(3), 518–532. doi:10.1016/j.neuron.2014.07.016
  • Yamazaki, T. ve Tanaka, S. (2005). Neural modeling of an internal clock. Neural computation, 17(5), 1032– 1058. doi:10.1162/0899766053491850
  • Yildirim, F. B. ve Sarikcioglu, L. (2007). Marie Jean Pierre Flourens (1794-1867): An extraordinary scientist of his time. Journal of neurology, neurosurgery, and psychiatry, 78(8), 852. doi:10.1136/jnnp.2007.118380
  • Yin, H. H. (2014). Action, time and the basal ganglia. Philosophical transactions of the Royal Society of London. Series B, Biological sciences, 369(1637), 20120473. doi:10.1098/rstb.2012.0473
  • Zeki, S., Watson, J. D., Lueck, C. J., Friston, K. J., Kennard, C. ve Frackowiak, R. S. (1991). A direct demonstration of functional specialization in human visual cortex. The Journal of neuroscience : the official journal of the Society for Neuroscience, 11(3), 641–649.
APA Unal G, Ayhan İ (2020). İşlevsel Özelleşmeye Yeni Bir Bakış: Nöronal Saatler. , 270 - 283. 10.7816/nesne-08-17-08
Chicago Unal Gunes,Ayhan İnci İşlevsel Özelleşmeye Yeni Bir Bakış: Nöronal Saatler. (2020): 270 - 283. 10.7816/nesne-08-17-08
MLA Unal Gunes,Ayhan İnci İşlevsel Özelleşmeye Yeni Bir Bakış: Nöronal Saatler. , 2020, ss.270 - 283. 10.7816/nesne-08-17-08
AMA Unal G,Ayhan İ İşlevsel Özelleşmeye Yeni Bir Bakış: Nöronal Saatler. . 2020; 270 - 283. 10.7816/nesne-08-17-08
Vancouver Unal G,Ayhan İ İşlevsel Özelleşmeye Yeni Bir Bakış: Nöronal Saatler. . 2020; 270 - 283. 10.7816/nesne-08-17-08
IEEE Unal G,Ayhan İ "İşlevsel Özelleşmeye Yeni Bir Bakış: Nöronal Saatler." , ss.270 - 283, 2020. 10.7816/nesne-08-17-08
ISNAD Unal, Gunes - Ayhan, İnci. "İşlevsel Özelleşmeye Yeni Bir Bakış: Nöronal Saatler". (2020), 270-283. https://doi.org/10.7816/nesne-08-17-08
APA Unal G, Ayhan İ (2020). İşlevsel Özelleşmeye Yeni Bir Bakış: Nöronal Saatler. Nesne Dergisi, 8(17), 270 - 283. 10.7816/nesne-08-17-08
Chicago Unal Gunes,Ayhan İnci İşlevsel Özelleşmeye Yeni Bir Bakış: Nöronal Saatler. Nesne Dergisi 8, no.17 (2020): 270 - 283. 10.7816/nesne-08-17-08
MLA Unal Gunes,Ayhan İnci İşlevsel Özelleşmeye Yeni Bir Bakış: Nöronal Saatler. Nesne Dergisi, vol.8, no.17, 2020, ss.270 - 283. 10.7816/nesne-08-17-08
AMA Unal G,Ayhan İ İşlevsel Özelleşmeye Yeni Bir Bakış: Nöronal Saatler. Nesne Dergisi. 2020; 8(17): 270 - 283. 10.7816/nesne-08-17-08
Vancouver Unal G,Ayhan İ İşlevsel Özelleşmeye Yeni Bir Bakış: Nöronal Saatler. Nesne Dergisi. 2020; 8(17): 270 - 283. 10.7816/nesne-08-17-08
IEEE Unal G,Ayhan İ "İşlevsel Özelleşmeye Yeni Bir Bakış: Nöronal Saatler." Nesne Dergisi, 8, ss.270 - 283, 2020. 10.7816/nesne-08-17-08
ISNAD Unal, Gunes - Ayhan, İnci. "İşlevsel Özelleşmeye Yeni Bir Bakış: Nöronal Saatler". Nesne Dergisi 8/17 (2020), 270-283. https://doi.org/10.7816/nesne-08-17-08