Yıl: 2020 Cilt: 5 Sayı: 4 Sayfa Aralığı: 361 - 364 Metin Dili: İngilizce DOI: 10.5152/cjms.2020.1342 İndeks Tarihi: 20-06-2021

Exosome Mimetic Nanovesicles; Are They Next Best Alternative Therapeutic Approach Combating Cancer?

Öz:
Cancer is regarded as one of the most dangerous diseases despite the advances in technology and therapeutic strategies against it. The current treatment strategies are ineffective as well as present with various disadvantages, such as drug resistances, ineffective uptake of the therapeutic agents at the tumor site, incompatible delivery of drugs, and immune-rejection, among others. Extracellular vesicles, especially exosome mimetic nanovesicles, have become one of the latest focuses of research in anticancer therapies. The invention of these nano-sized vesicles, which function in cell-to-cell communication, have promoted the development of innovative drug delivery systems due to their cargo-carrying abilities and targeted deliveries. Exosome mimetic nanovesicles have similar surface protein structures to exosomes and offer various important advantages over the exosomes, such as the production yield and isolation protocol. This review aims to summarize the current research studies on exosome mimetic nanovesicles together with their potential in combating cancer in the future.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Derleme Erişim Türü: Erişime Açık
  • 1. Hanahan D, Weinberg RA. Hallmarks of Cancer: The Next Generation. Cell 2011; 144(5): 646-74. [Crossref]
  • 2. Michod D, Widmann C. DNA-Damage Sensitizers: Potential New Therapeutical Tools to Improve Chemotherapy. Crit Rev Oncol Hematol 2007; 63(2): 160-71. [Crossref]
  • 3. Jackson SP, Bartek J. The DNA-Damage Response in Human Biology and Disease. Nature 2009; 461: 1071-8. [Crossref]
  • 4. Schiff D, Wen PY, van den Bent MJ. Neurological Adverse Effects Caused by Cytotoxic and Targeted Therapies. Nat Rev Clin Oncol 2009; 6(10): 596-603. [Crossref]
  • 5. Jacob A, Richard D J, O’Bryne KJ. EV, Microvesicles/MicroRNAs and Stem Cells in Cancer. In: Mettinger K, Rameshwar P, Kumar V. (eds) Exosomes, Stem Cells and MicroRNA. Adv Exp Med Biol. 2018: 1056.
  • 6. Crenshaw BJ, Sims B, Matthews QL. Biological Function of Exosomes as Diagnostic Markers and Therapeutic Delivery Vehicles in Carcinogenesis and Infectious Diseases. Nanomedicines; Intech Open Limited: London, UK, 2018. [Crossref]
  • 7. Maeda H, Wu J, Sawa T, Matsumura Y, Hori K. Tumor Vascular Permeability and the EPR Effect in Macromolecular Therapeutics: A Review. J Control Release 2000; 65(1-2): 271-84. [Crossref]
  • 8. Ferrari M. Nanogeometry: Beyond Drug Delivery. Nat Nanotechnol 2008; 3(3): 131-2. [Crossref]
  • 9. Estanqueiro M, Amaral MH, Conceição J, Sousa Lobo JM. Nanotechnological carriers for cancer chemotherapy: the state of the art. Colloids Surf B Biointerfaces 2015; 126: 631-48. [Crossref]
  • 10. Sajid M I, Jamshaid U, Jamshaid T, Zafar N, Fessi H, Elaissari A. Carbon nanotubes from synthesis to in vivo biomedical applications. Inter J Pharm 2016; 501(1-2): 278-99. [Crossref]
  • 11. Pérez-Herrero E, Fernández-Medarde A. Advanced targeted therapies in cancer: drug nanocarriers, the futurjkbjmnn e of chemotherapy. Eur J Pharm Biopharm 2015; 93: 52-79. [Crossref]
  • 12. Zhu Y, Liao L. Applications of nanoparticles for anticancer drug delivery: a review. J Nanosci Nanotechnol 2015; 15(7): 4753-73. [Crossref]
  • 13. Szebeni J, Storm G. Complement activation as a bioequivalence issue relevant to the development of generic liposomes and other nanoparticulate drugs. Biochem Biophys Res Commun 2015; 468(3): 490-7. [Crossref]
  • 14. Pérez-Herrero E, Fernández-Medarde A. Advanced targeted therapies in cancer: drug nanocarriers, the future of chemotherapy. Eur J Pharm Biopharm 2015; 93: 52-79. [Crossref]
  • 15. Anderson HC. Vesicles associated with calcification in the matrix of epiphyseal cartilage. J Cell Biol 1969; 41(1): 59-72. [Crossref]
  • 16. Johnstone RM, Adam M, Hammond JR, Orr L, Turbide C. Vesicle formation during reticulocyte maturation. Association of plasma membrane activities with released vesicles (exosomes). J Biol Chem 1987; 262(19): 9412-20.
  • 17. Estanqueiro M, Amaral MH, Conceição J, Sousa Lobo JM. Nanotechnological carriers for cancer chemotherapy: the state of the art. Colloids Surf B Biointerfaces 2015; 126: 631-48. [Crossref]
  • 18. Fanciullino R, Ciccolini J, Milano G. Challenges, expectations and limits for nanoparticles-based therapeutics in cancer: A focus on nano-albumin-bound drugs. Crit Rev Oncol Hematol 2013; 88(3): 504-13. [Crossref]
  • 19. Fais S, Logozzi M, Lugini L, Federici C, Azzarito T, Zarovni N, Chiesi A. Exosomes: the ideal nanovectors for biodelivery. Biol Chem 2013; 394(1): 1-15. [Crossref]
  • 20. Luan X, Sansanaphongpricha K, Myers I, Chen H, Yuan H, Sun D. Engineering exosomes as refned biological nanoplatforms for drug delivery. Acta Pharmacol Sin 2017; 38(6): 754-63. [Crossref]
  • 21. HoodJ L. Post isolation modifcation of exosomes for nanomedicine applications. Nanomedicine 2016; 11(13): 1745-56. [Crossref]
  • 22. Marcus ME, Leonard JN. FedExosomes: Engineering Terapeutic Biological Nanoparticles that Truly Deliver. Pharmaceuticals 2013; 6(5): 659-80. [Crossref]
  • 23. Xitong D, Xiaorong Z. Targeted therapeutic delivery using engineered exosomes and its applications in cardiovascular diseases. Gene 2016; 575: 377-84. [Crossref]
  • 24. Pascucci L, Cocce V, Bonomi A, Ami D, Ceccarelli P, Ciusani E, et al. Paclitaxel is incorporated by mesenchymal stromal cells and released in exosomes that inhibit in vitro tumor growth: A new approach for drug delivery. J Control Release 2014; 192: 262-70. [Crossref]
  • 25. Yang Y, Chen Y, Zhang F, Zhao Q, Zhong H. Increased anti-tumour activity by exosomes derived from doxorubicin-treated tumour cells via heat stress. Int J Hyperthermia 2015; 31(5): 498-506. [Crossref]
  • 26. Sun D, Zhuang X, Xiang X, Liu Y, Zhang S, Liu C, et al. A Novel Nanoparticle Drug Delivery System: The Anti-infammatory Activity of Curcumin Is Enhanced When Encapsulated in Exosomes. Mol Ther 2010; 18(9): 1606-14. [Crossref]
  • 27. Zhuang X, Xiang X, Grizzle W, Sun D, Zhang S, Axtell RC, et al. Treatment of Brain Infammatory Diseases by Delivering Exosome Encapsulated Anti-infammatory Drugs From the Nasal Region to the Brain. Mol Ther 2011; 19(10): 1769-79. [Crossref]
  • 28. Haney MJ, Kiyachko NL, Zhao Y, Gupta R, Plotnikova EG, He Z, et al. Exosomes as drug delivery vehicles for Parkinson’s disease therapy. J Control Release 2015; 207: 18-30. [Crossref]
  • 29. Liu Y, Li D, Liu Z, Zhou Y, Chu D, Li X, et al. Targeted exosome-mediated delivery of opioid receptor Mu siRNA for the treatment of morphine relapse. Sci Rep 2015; 5: 17543. [Crossref]
  • 30. Escudier B, Dorval T, Chaput N, Andre F, Caby MP, Novault S, et al. Vaccination of metastaticmelanomapatientswithautologousdendriticcell (DC) derived-exosomes: results of thefirstPhase I clinicaltrial. J Transl Med 2015; 3(1): 10. [Crossref]
  • 31. Téry C, Amigorena S, Raposo G, Clayton A. In Current Protocols in Cell Biology (John Wiley & Sons, Inc., 2001).
  • 32. Ban J-J, Lee M, Im W,Kim M. Low pH increases the yield of exosome isolation. Biochem Biophys Res Commun 2015; 461(1): 76-9. [Crossref]
  • 33. Jang SC, Kim OY, Toon CM, Choi DS, Roh TY, Park J, et al. Bioinspired Exosome-Mimetic Nanovesicles for Targeted Delivery of Chemotherapeutics to Malignant Tumors. ACS Nano 2013; 7: 7698-710. [Crossref]
  • 34. Jo W, Jeong D, Kim J, Cho S, Jang SC, Han C, et al. Microfuidic fabrication of cell-derived nanovesicles as endogenous RNA carriers. Lab on a Chip 2014; 14(7): 1261-9. [Crossref]
  • 35. Jo W, Kim J, Yoon J, Jeong D, Cho S, Jeong H, et al. Large-scale generation of cell-derived nanovesicles. Nanoscale 2014; 6(20): 12056-64. [Crossref]
  • 36. Roth JC, Curiel DT, Pereboeva L. Cell vehicle targeting strategies. Gene Ter 2008; 15(10): 716-29. [Crossref]
  • 37. Goh WJ, Lee CK, Zou S, Woon ECY, Czarny B, Pastorin G. Doxorubicin-loaded cell-derived nanovesicles: an alternative targeted approacj for anti-tumor therapy. Int J Nanomedicine 2017; 12: 2759-67. [Crossref]
  • 38. Ingato D, Edson JA, Zakharian M, Kwon YJ. Cancer Cell-Derived, Drug-Loaded Nanovesicles Induced by Sulphydryl-Blocking for Effective and Safe Cancer Therapy. CS Nano 2018; 129: 9568-77. [Crossref]
  • 39. Kalimuthu S, Gangadaran P, Rajendran RL, ZhuL, Oh JM, Lee HW, et al. A New Approach for Loading Anticancer Drugs IntoMesenchymal Stem Cell-Derived Exosome Mimetics for Cancer Therapy. Front Pharmacol2018; 9: 1116. [Crossref]
  • 40. Hong BS, Cho JH, Kim H, Choi EJ, Rho S, Kim J, et al. Colorectal cancer cell derived microvesicles are enriched in cell cycle-related mRNAs that promote proliferation of endothelial cells. BMC Genomics 2009; 10: 556. [Crossref]
  • 41. Valadi H, Ekstrom K, Bossios A, Sjostrand M, Lee JJ, Lotvall JO. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 2007; 9(6): 654-9. [Crossref]
  • 42. Skog J, Wurdinger T, van Rijn S, Meijer DH, Gainche L, Sena-Esteves M, et al. Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat Cell Biol 2008; 10(12): 1470-6. [Crossref]
  • 43. Lunavat TR, Jang SC, Nilsson L, Park HT, Repiska G, Lasser C, et al. RNAi delivery by exosome-mimetic nanovesicles - Implications for targeting c-Myc in cancer. Biomaterials 2016; 102: 231-8. [Crossref]
  • 44. Huang C Z, Huang W Z, Zhang G, Tang D L, In vivo study on the effects of curcumin on the expression profiles of anti-tumour genes (VEGF, CyclinD1 and CDK4) in liver of rats injected with DEN. Mol Biol Rep 2013; 40(10): 5825-31. [Crossref]
  • 45. Sawai CM, Freund J, Oh P, Ndiaye-Lobry D, Bretz J C, Strikoudis A, Genesca L, et al. Therapeutic targeting of the cyclin D3:CDK4/6 complex in T cell leukemia. Cancer Cell 2012; 22(4): 452-65. [Crossref]
  • 46. Dobashi Y, Goto A, Fukayama M, Abe A, Ooi A. Overexpression of cdk4/cyclin D1, a possible mediator of apoptosis and an indicator of prognosis in human primary lung carcinoma. Int J Cancer 2004; 110(4): 532-41. [Crossref]
  • 47. Yang Z, Xie J, Zhu J, Kang C, Chiang C, Wang X, et al. Functional exosome-mimic for delivery of siRNA to cancer: in vitro and in vivo evaluation. J Control Release 2016; 243: 160-71. [Crossref]
APA Ozverel C (2020). Exosome Mimetic Nanovesicles; Are They Next Best Alternative Therapeutic Approach Combating Cancer?. , 361 - 364. 10.5152/cjms.2020.1342
Chicago Ozverel Cenk Serhan Exosome Mimetic Nanovesicles; Are They Next Best Alternative Therapeutic Approach Combating Cancer?. (2020): 361 - 364. 10.5152/cjms.2020.1342
MLA Ozverel Cenk Serhan Exosome Mimetic Nanovesicles; Are They Next Best Alternative Therapeutic Approach Combating Cancer?. , 2020, ss.361 - 364. 10.5152/cjms.2020.1342
AMA Ozverel C Exosome Mimetic Nanovesicles; Are They Next Best Alternative Therapeutic Approach Combating Cancer?. . 2020; 361 - 364. 10.5152/cjms.2020.1342
Vancouver Ozverel C Exosome Mimetic Nanovesicles; Are They Next Best Alternative Therapeutic Approach Combating Cancer?. . 2020; 361 - 364. 10.5152/cjms.2020.1342
IEEE Ozverel C "Exosome Mimetic Nanovesicles; Are They Next Best Alternative Therapeutic Approach Combating Cancer?." , ss.361 - 364, 2020. 10.5152/cjms.2020.1342
ISNAD Ozverel, Cenk Serhan. "Exosome Mimetic Nanovesicles; Are They Next Best Alternative Therapeutic Approach Combating Cancer?". (2020), 361-364. https://doi.org/10.5152/cjms.2020.1342
APA Ozverel C (2020). Exosome Mimetic Nanovesicles; Are They Next Best Alternative Therapeutic Approach Combating Cancer?. Cyprus Journal of Medical Sciences, 5(4), 361 - 364. 10.5152/cjms.2020.1342
Chicago Ozverel Cenk Serhan Exosome Mimetic Nanovesicles; Are They Next Best Alternative Therapeutic Approach Combating Cancer?. Cyprus Journal of Medical Sciences 5, no.4 (2020): 361 - 364. 10.5152/cjms.2020.1342
MLA Ozverel Cenk Serhan Exosome Mimetic Nanovesicles; Are They Next Best Alternative Therapeutic Approach Combating Cancer?. Cyprus Journal of Medical Sciences, vol.5, no.4, 2020, ss.361 - 364. 10.5152/cjms.2020.1342
AMA Ozverel C Exosome Mimetic Nanovesicles; Are They Next Best Alternative Therapeutic Approach Combating Cancer?. Cyprus Journal of Medical Sciences. 2020; 5(4): 361 - 364. 10.5152/cjms.2020.1342
Vancouver Ozverel C Exosome Mimetic Nanovesicles; Are They Next Best Alternative Therapeutic Approach Combating Cancer?. Cyprus Journal of Medical Sciences. 2020; 5(4): 361 - 364. 10.5152/cjms.2020.1342
IEEE Ozverel C "Exosome Mimetic Nanovesicles; Are They Next Best Alternative Therapeutic Approach Combating Cancer?." Cyprus Journal of Medical Sciences, 5, ss.361 - 364, 2020. 10.5152/cjms.2020.1342
ISNAD Ozverel, Cenk Serhan. "Exosome Mimetic Nanovesicles; Are They Next Best Alternative Therapeutic Approach Combating Cancer?". Cyprus Journal of Medical Sciences 5/4 (2020), 361-364. https://doi.org/10.5152/cjms.2020.1342