Serdar COŞKUN
(Tarsus Üniversitesi, Mühendislik Fakültesi, Makina Mühendisliği Bölümü, Tarsus, Mersin, Türkiye)
Yıl: 2020Cilt: 35Sayı: 1ISSN: 1019-1011Sayfa Aralığı: 27 - 38İngilizce

27 0
Non-linear Control of Inverted Pendulum
Presented is a study of non-linear control for an inverted pendulum system. The inverted pendulum system is a great example of an underactuated, non-minimum phase, and highly unstable system. The objective of this research paper is to derive non-linear control laws for an inverted pendulum system. First, dynamic equations of the inverted pendulum are derived by utilizing the Lagrange's equations and then it is linearized around an unstable upright position. Secondly, the corresponding analysis uses the standard linear stability arguments and the traditional Lyapunov method. The non-linear sliding mode control and feedback linearization control laws are then derived The feedback linearization control law is used to transform the non-linear system into an equivalent linear system such that a suitable feedback control law can be proposed. The stabilization of the initial condition and reference tracking is studied in this paper. I demonstrate the effectiveness of the proposed non-linear control strategies using MATLAB/Simulink software
DergiAraştırma MakalesiErişime Açık
  • 1. Chanchareon, R., Sangveraphunsiri, V., Chantranuwathana, S., 2006. Tracking Control of an Inverted Pendulum Using Computed Feedback Linearization Technique. In 2006 IEEE Conference on Robotics, Automation and Mechatronics 1-6, IEEE.
  • 2. Du, L., Cao, F., 2015. Nonlinear Controller Design of the Inverted Pendulum System based on Extended State Observer. In 2015 International Conference on Automation, Mechanical Control and Computational Engineering. Atlantis Press.
  • 3. Zare, A., Lotfi, T., Gordan, H., Dastranj, M., 2012. Robust Control of Inverted Pendulum Using Fuzzy Sliding Mode Control and Particle Swarm Optimization Pso Algorithm. International Journal of Scientific & Engineering Research, 3(10), 1-5.
  • 4. Brisilla, R.M., Sankaranarayanan, V., 2015. Nonlinear Control of Mobile Inverted Pendulum. Robotics and Autonomous Systems, 70, 145-155.
  • 5. Stellet, J. Control of an Inverted Pendulum
  • 6. Anderson, C.W., 1989. Learning to Control an Inverted Pendulum Using Neural Networks. IEEE Control Systems Magazine, 9(3), 31-37.
  • 7. Gani, A., Kececioglu, O.F., Acikgoz, H., Sekkeli, M., 2017. Fuzzy Logic Controller Design Based on Sugeno Inference Method for Nonlinear Inverted Pendulum Dynamical System. Sigma Journal of Engineering and Natural Sciences-Sigma Muhendislik ve Fen Bilimleri Dergisi, 8(1), 19-30.
  • 8. Şen, M.A., Bilgiç, H.H., Kalyoncu, M., 2016. Çift Ters Sarkaç Sisteminin Denge ve Konum Kontrolü için Arı Algoritması ile Lqr Kontrolcü Parametrelerinin Tayini. Mühendis ve Makina, 57(679), 53-62.
  • 9. Bilgic, H.H., Sen, M.A., Kalyoncu, M., 2016. Tuning of LQR Controller for an Experimental Inverted Pendulum System Based on the Bees Algorithm. Journal of Vibroengineering, 18(6), 3684-3694.
  • 10. Köse, E., Abaci, K., Kizmaz, H., Aksoy, S., Yalçin, M.A., 2013. Sliding Mode Control Based on Genetic Algorithm for WSCC Systems Include of SVC. Elektronika ir Elektrotechnika, 19(4), 25-28.
  • 11. Köse, E., 2017. Controller Design by Using Non-linear Control Methods for Satellite Chaotic System. Electrical Engineering, 99(2), 763-773.
  • 12.Irfan, S., Mehmood, A., Razzaq, M.T., Iqbal, J. 2018. Advanced Sliding Mode Control Techniques for Inverted Pendulum: Modelling and Simulation. Engineering Science and Technology, an International Journal, 21(4), 753-759.
  • 13. Grossimon, P., Barbieri, E., Drakunov, S., 1996. Sliding Mode Control of an Inverted Pendulum, System Theory, Proceedings of the Twenty-Eighth Southeastern Symposium, ISBN 0-8186-7352-4, pp.248-252, 31 Mar - 02 Apr 1996 IEEE.
  • 14. Naik, M., Cochran, D., 2012. System Identification of an Inverted Pendulum ona Cart using Compressed Sensing, Signals, Systems and Computers (ASILOMAR), 2012 Conference Record of the Forth Sixth Asilomar Conference, pp.426-430, 4-7 Nov 2012 IEEE.
  • 15. de Jesús Rubio, J., 2018. Robust Feedback Linearization for Nonlinear Processes Control. ISA Transactions, 74, 155-164.
  • 16. Moreno-Valenzuela, J., Aguilar-Avelar, C., 2018. Feedback Linearization Control of the IWP. In Motion Control of Underactuated Mechanical Systems, 141-158, Springer, Cham.
  • 17.Bugeja, M., 2003. Non-linear Swing-up and Stabilizing Control of an Inverted Pendulum System. In The IEEE Region 8 EUROCON 2003. Computer as a Tool. 2, 437-441, IEEE.

TÜBİTAK ULAKBİM Ulusal Akademik Ağ ve Bilgi Merkezi Cahit Arf Bilgi Merkezi © 2019 Tüm Hakları Saklıdır.