Mustafa ERKAYAOĞLU
(Orta Doğu Teknik Üniversitesi, Mühendislik Fakültesi, Maden Mühendisliği Bölümü, Ankara, Türkiye)
Yıl: 2020Cilt: 35Sayı: 1ISSN: 1019-1011Sayfa Aralığı: 105 - 114Türkçe

18 0
Madencilik Sektöründe İş Sağlığı ve Güvenliği Yönetimi için Veri Entegrasyonu Uygulaması
Madencilik endüstrisi, iş sağlığı ve güvenliği açısından değerlendirildiğinde, farklı mühendislik alanlarını ve bunlara bağlı riskleri kapsamaktadır. Günümüzde, teknoloji alanında yaşanan gelişmeler, madencilik endüstrisini mevcut donanım ve yazılımlar aracılığıyla, üretim, ekipmanların bakım/onarım durumu, maliyet, çevresel koşullar ve en önemlisi iş sağlığı ve güvenliği konusunda, veri toplayabilecek duruma getirmiştir. Bu çalışmada, iş sağlığı ve güvenliği ile ilgili farklı kaynaklardan elde edilen verilerin entegre edildiği bir uygulama sunulmaktadır. Veri entegrasyonu uygulamasında kullanılan, vaka çalışması sonucunda ekipman sağlığı ile ilgili güvensiz durum kayıtlarının, farklı ekipler ve taşıma işlemleri için incelenebileceği ortaya konmuştur. Özellikle vardiya başlangıçlarının, iş sağlığı ve güvenliği ile ilgili olayların yaşanabileceği bir zaman aralığı olduğu belirlenmiştir. Veri görselleştirmesi, analiz kabiliyeti açısından sınırlı olup, günümüzde kullanılan bilgi görselleri ve modern görselleştirme araçlarına rağmen, veri içerisindeki yapılar karmaşık hale gelebilmektedir. Belirli olayların sebepleri incelenirken, veri madenciliği gibi daha sistematik yöntemlerin kullanılması önerilmektedir.
DergiAraştırma MakalesiErişime Açık
  • 1. Kolonja, L., Stanković, R., Obradović, I., Kitanović, O., Stevanovic, D., Radojicic, M., 2016. A Business Intelligence Approach to Mine Safety Management. 13th ISCSM 2016 Belgrade, 1-9.
  • 2. Bonsu, J., van Dyk, W., Franzidis, J-P, Petersen, F., Isafiade, A., 2016. A Systems Approach to Mining Safety: An Application of the Swiss Cheese Model. Journal of the Southern African Institute of Mining and Metallurgy, 116(8), 776-784.
  • 3. Shi D., Guan J., Zurada J., Manikas A., 2017. A Data-Mining Approach to Identification of Risk Factors in Safety Management Systems, Journal of Management Information Systems, 34:4, 1054-1081.
  • 4. Dessureault, S., Sinuhaji, A., Coleman, P., 2007. Data Mining Mine Safety Data, Mining Engineering. 59(8), 64-70.
  • 5. Sanmiquel, L., Rossell, J.M., Vintro, C., 2015. Study of Spanish Mining Accidents Using Data Mining Techniques, Safety Science, 75, 49-55.
  • 6. Sanmiquel, L., Bascompta, M., Rossell, J.M., Anticoi, H.F., Guash, E., 2018. Analysis of Occupational Accidents in Underground and Surface Mining in Spain Using Data-Mining Techniques. International Journal of Environmental Research and Public Health, 15, 462, 1-11.
  • 7. Ruso, J., Stojanović, V., 2012. Occupational Health and Safety Using Data Mining. International Journal for Quality Research, 6(4), 355-363.
  • 8. Cheng, C., Leu, S., Cheng, Y., Wu, T., Lin, C., 2012. Applying Data Mining Techniques to Explore Factors Contributing to Occupational Injuries in Taiwan’s Construction Industry, Accident Analysis & Prevention, 48, 214-222.
  • 9. Kniesner, T.J., Leeth, J.D., 2004. Data Mining Mining Data: MSHA Enforcement Efforts, Underground Coal Mine Safety, and New Health Policy Implications. Journal of Risk and Uncertainty, 29(2), 83-111.
  • 10.Gerassis, S., Saavedra, Á., Taboada, J., Alonso, E., Bastante, F.G., 2019. Differentiating Between Fatal and Non-fatal Mining Accidents Using Artificial Intelligence Techniques. International Journal of Mining, Reclamation and Environment, 1-13.
  • 11. Erkayaoğlu, M., Dessureault, S., 2019. Improving Mine-to-mill by Data Warehousing and Data Mining, International Journal of Mining, Reclamation and Environment, 33:6, 409-424.
  • 12. Dindarloo, S.R.R, Siami-Irdemoosa, E., 2017. Data Mining in Mining Engineering: Results of Classification and Clustering of Shovels Failures Data. International Journal of Mining, Reclamation and Environment, 31(2), 105-118.
  • 13.Jianwei, C., Shengqiang, Y., 2012. Data Mining Applications in Evaluating Mine Ventilation System, Safety Science, 50(4), 918-922.
  • 14. Vaught, C., Mallett, L., Brnich, Jr., M.J., Reinke, D., Kowalski-Trakofler, K.M., Cole, H.P., 2006. Knowledge Management and Transfer for Mine Emergency Response. International Journal of Emergency Management, 3(2/3), 178-191.
  • 15. Queensland Mine Safety Framework, https://www.dnrme.qld.gov.au/miningresources/initiatives/qld-mine-safetyframework (Erişim Tarihi: Şubat, 2020)
  • 16. Liu, J., 2019. Using Big Data Database to Construct New GFuzzy Text Mining and Decision Algorithm for Targeting and Classifying Customers. Computers & Industrial Engineering, 128, 1088-1095.
  • 17.Rogers, W.P., Nelson, M.G., Richins, A., Hodgson, A., 2017. Data Management Best Practices of Complex Socio-technical Systems: A Review of U.S. Mining Safety and Health Management. Proceedings of the 8th International Conference on Sustainable Development in the Minerals Industry, 83-87.
  • 18. Haas, E.J., Ryan, M., Willmer, D.R., 2018. An Examination of Mining Companies’ Online Health and Safety Policies: Implications for Improving Risk Management. Journal of Safety, Health, Environmental Research. 14(1), 337-347.
  • 19.Chunmin L., Xin Z., Xin L., 2012. Mine Safetyp. Information Technology in the Framework of Digital Mine, Safety Science, 50(4), 846-850.
  • 20. Kahraman, M.M., Dessureault, S., 2018. Increasing Adherence to Mine Plan Through Data Integration and Process Change, International Journal of Mining, Reclamation and Environment, 32(5), 341-354.
  • 21.Microsoft SQL Server, 2019, https://www.microsoft.com/tr-tr/sql-server/sqlserver-2019 (Erişim Tarihi: Şubat, 2020)
  • 22.Çetinyokuş, T., Gökçen, H., 2008. Bütünleşı̇ k Verı̇ Küpü Sı̇ stemı̇ (Bvks): Satış Küpü Uygulaması. Gazi University Journal of Engineering and Architecture, 23(2), 477-484.

TÜBİTAK ULAKBİM Ulusal Akademik Ağ ve Bilgi Merkezi Cahit Arf Bilgi Merkezi © 2019 Tüm Hakları Saklıdır.