Durmuş YARIMPABUÇ
(Osmaniye Korkut Ata Üniversitesi, Fen Edebiyat Fakültesi, Matematik Bölümü, Osmaniye, Türkiye)
Ertuğrul CİHAN
(Osmaniye Korkut Ata Üniversitesi, Mühendislik Fakültesi, Makine Mühendisliği Bölümü, Osmaniye, Türkiye)
Kerimcan ÇELEBİ
(Çukurova Üniversitesi, Ceyhan Mühendislik Fakültesi, Makine Mühendisliği Bölümü, Adana, Türkiye)
Mehmet EKER
(Osmaniye Korkut Ata Üniversitesi, Mühendislik Fakültesi, Makine Mühendisliği Bölümü, Osmaniye, Türkiye)
Yıl: 2020Cilt: 35Sayı: 1ISSN: 1019-1011Sayfa Aralığı: 139 - 147Türkçe

18 0
Heat Conduction Analysis of Two-Dimensional Anisotropic Plate
The heat conduction of a two dimensional anisotropic plate with non-homogeneous general boundary conditions is solved by using ANSYS Fluent in the cartesian coordinate system. It is assumed that the thermal conductivity and heat generation of the material arbitrarily change in the direction of the two space variables. Under these conditions, a variable coefficient differential equation is obtained. Analytical solutions of such equations cannot be obtained except for some simple material functions. The variable coefficient differential equation, which includes the heat conduction coefficient and volumetric heat generation depending on the two space variables and non-homogeneous boundary conditions, is handled numerically by ANSYS Fluent user-defined function (UDF). The accuracy of the numerical method is demonstrated by comparing analytical and numerical solutions using simple material functions.
DergiAraştırma MakalesiErişime Açık
  • 1. Zedan, M., Schneider, G.E., 1982. A Physical Approach to the Finite-difference Solution of the Conduction Equation in Generalized Coordinates, Num.H Trans., Part A, 5(1), 1-19.
  • 2. Comini, G., Guidice, S., Lewis, R.W., Zienkiewicz, O.C., 1974. Finite Element Solution on Nonlinear Heat Conduction Problems with Special Reference to Phase Change, Int. J. for Num. Methods in Eng., 8, 613-624.
  • 3. Wrobel, L.C., Aliabadi, M.H., 2002. The Boundary Element Method: Applications in Solids and Structures, 2 Volume Set, John Wiley and Sons, USA, 1066.
  • 4. Hsieh, M.H., Ma, C.C., 2002. Analytical Investigations for Heat Cond. Prob. in Anisotropic Thin-layer Media with Embedded Heat Sources, Int.J.H.M.Trans., 45(20), 4117-4132.
  • 5. Ma, C.C., Chang, S.W., 2004. Analytical Exact Solutions of Heat Conduction Problems for Anisotropic Multi-layered Media, Int. J. Heat Mass Trans., 47(8-9), 1643–1655.
  • 6. Mera, N.S., Elliot, L., Ingham, D.B., Lesnic, D., 2001. A Comparison of Boundary Element Method Formulations for Steady State Anisotropic Heat Conduction Problems, Eng. Anal. Bound. Elem., 25(2), 115–28.
  • 7. Florez, W.F., Power, H., 2001. Comparison Between Continuous and Discontinuous Boundary Elements in the Multidomain Dual Reciprocity Method for the Solution of the Two-dimensional Navier-Stokes Equations, Eng. Anal. Bound. Elem., 25(1), 57–69.
  • 8. Tadeu, A., Antonio, J., 2000. Use of Constant, Linear and Quadratic Boundary Elements in 3D Wave Diffraction Analysis, Eng. Anal. Bound. Elem., 24(2), 131–144.
  • 9. Wang, H., Qin, Q.H., Kang, Y.L., 2005. A New Meshless Method for Steady-state Heat Conduction Problems in Anisotropic and Inhomogeneous Media, Arc. App. Mech., 74(8), 563–579.
  • 10. Sladek, J., Sladek, V., Atluri, S.N., 2004. Meshless Local Petrov-Galerkin Method for Heat Conduction Problem in an Anisotropic Medium, CMES, Comput Model Eng. Sci., 6(3), 309–318.
  • 11. Hsieh, M.H., Ma, C.C., 2002. Analytical Investigations for Heat Conduction Problems in Anisotropic Thin-layer Media with Embedded Heat Sources, Int.J.H.M.Trans., 45(20), 4117-4132.
  • 12. Haji-Sheikh, A., Beck, J.V., Agonafer, D., 2003. Steady-state Heat Conduction in Multilayer Bodies, Int. J. Heat Mass Transfer, 46(13), 2363–2379.
  • 13. Shiah, Y.C., Tan, C.L., 1997. BEM Treatment of Two-dimensional Anisotropic Field Problems by Direct Domain Mapping, Engineer. Anly. Bound. Element, 20(4), 347-351.
  • 14. Shiah, Y.C., Tan, C.L., 2004. BEM Treatment of Three-dimensional Anisotropic Field Problems by Direct Domain Mapping, Engineer. Anly. Bound. Element, 28(1), 43–52.
  • 15. Shiah, Y.C., Hwanh, P.W., Yang, R.B., 2006. Heat Conduction in Multiply Adjoined Anisotropic Media with Embedded Point Heat Sources, J. Heat Transfer, 128(2), 207–214.
  • 16. Shiah, Y.C., Lee, B.J., 2011. Boundary Element Modeling of 3-D Anisotropic Heat Conduction Involving Arbitrary Volume Heat Source, Math.Comp.Mod., 54(9-10), 2392-2402.
  • 17. Yarımpabuç, D., Cihan, E., Eker, M., Celebi, K., 2016. Analytical and Numerical Solutions of Anisotropic Heat Conduction Problems with Location-dependent Heat Generation, 1st International Mediterranean Science and Engineering Congress (IMSEC 2016), 1673-1680, Paper ID:496.
  • 18. Ferziger, J.H., Peric, M., 2002. Computational Methods for Fluid Dynamics, Third Ed. Springer, 431, USA.
  • 19. ANSYS, Inc., 2009. Ansys Fluent 12.0 UDF Manual, 2070.

TÜBİTAK ULAKBİM Ulusal Akademik Ağ ve Bilgi Merkezi Cahit Arf Bilgi Merkezi © 2019 Tüm Hakları Saklıdır.