Yıl: 2020 Cilt: 36 Sayı: 4 Sayfa Aralığı: 381 - 396 Metin Dili: Türkçe DOI: 10.30733/std.2020.01268 İndeks Tarihi: 23-06-2021

Kanserin Ayırt Edici Özelliklerinde Kodlanmayan RNA'ların Rolü: Güncel Bir Bakış

Öz:
Kanser, genomda meydana gelen bir seri bozukluklar sonucu ortaya çıkan ciddi bir genetik hastalıktır. Yüksek verimli yeni nesil dizileme teknolojilerinin geliştirilmesi ve büyük ölçekli projelerin verilerinin yayınlanması farklı kanser türlerinde değişik ifade profili gösteren birçok kodlanmayan RNA (ncRNA) molekülünün tespit edilmesine olanak sağlamıştır. Uzun kodlanmayan RNA (lncRNA) ve mikroRNA (miRNA) gibi ncRNA transkriptlerinin kanserin oluşumunda ve ilerlemesinde kritik rollerinin olduğu ve kanser tanısında/tedavisinde kullanılabilir olduğu bildirilmiştir. Özellikle, miRNA’lar gen ifadesini post-transkripsiyonel seviyede kontrol eden ve kanserin önemli ayırt edici özellikleri olan metastaz, invazyon, hücre çoğalması, farklılaşması, anjiyogenez gibi önemli süreçlerde kritik rolleri olduğu bilinen küçük RNA molekülleridir. Benzer şekilde, lncRNA’lar da kanserin moleküler mekanizmasının aydınlatılmasında önemli yeri olan RNA transkriptleri olarak tanımlanmışlardır. Dolayısıyla, bu kapsamlı derlemede miRNA, lncRNA, T-UCR gibi protein kodlama kapasitesi olmayan ancak işlevsel olan ncRNA’lar ile kanserin ayırt edici özellikleri güncel bir bakış açısı ile ele alınmıştır.
Anahtar Kelime:

The Role of Non-coding RNAs in the Hallmarks of Cancer: A Current Perspective

Öz:
Cancer is a serious genetic disease caused by a series of disorders in the genome. Development of high-troughput sequencing approaches as well as the publication of large-scale projects have enabled the identification of several non-coding RNA molecules that are differentially expressed in various types of cancer. It has been reported that ncRNA transcripts such as long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) have critical roles in the development and progression of cancer and can be used in the diagnosis/treatment of cancer. In particular, miRNAs are small RNA molecules which control gene expression at the post-transcriptional level and play critical roles in the important hallmark capabilities of cancers such as metastasis, invasion, cell proliferation, differentiation, and angiogenesis. Similarly, lncRNAs have also been identified as RNA transcripts that have important roles in the understanding of the molecular mechanism of cancer. Accordingly, in this comprehensive review, functional ncRNA molecules without protein coding capacity such as miRNAs, lncRNAs, and T-UCRs and the hallmarks of cancer were discussed together with a current perspective.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Derleme Erişim Türü: Erişime Açık
  • 1.Consortium EP. Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature 2007;447(7146):799.
  • 2.International Human Genome Sequencing C. Initial sequencing and analysis of the human genome. Nature 2001;409(6822):860.
  • 3.Kapranov P, Cheng J, Dike S, et al. RNA maps reveal new RNA classes and a possible function for pervasive transcription. Science 2007;316(5830):1484-8.
  • 4.Calin GA, Croce CM. MicroRNA signatures in human cancers. Nat Rev Cancer 2006;6(11):857.
  • 5.Chen LL, Carmichael GG. Long noncoding RNAs in mammalian cells: What, where, and why? Wiley Interdiscip Rev RNA 2010;1(1):2-21.
  • 6.Hanahan D, Weinberg RA. The hallmarks of cancer. Cell 2000;100(1):57-70.
  • 7.Hanahan D, Weinberg RA. Hallmarks of cancer: The next generation. Cell 2011;144(5):646-74.
  • 8.Kastan MB, Bartek J. Cell-cycle checkpoints and cancer. Nature 2004;432(7015):316.
  • 9.O'Leary B, Finn RS, Turner NC. Treating cancer with selective CDK4/6 inhibitors. Nat Rev Clin Oncol 2016;13(7):417.,
  • 10.Li Y, Liu J, Liu ZZ, et al. MicroRNA-145 inhibits tumour growth and metastasis in osteosarcoma by targeting cyclin-dependent kinase, CDK6. Eur Rev Med Pharmacol Sci 2016;20(24):5117-25.
  • 11.Achari C, Winslow S, Ceder Y, et al. Expression of miR-34c induces G2/M cell cycle arrest in breast cancer cells. BMC cancer 2014;14(1):538.
  • 12.Zhao J-J, Lin J, Lwin T, et al. microRNA expression profile and identification of miR-29 as a prognostic marker and pathogenetic factor by targeting CDK6 in mantle cell lymphoma. Blood 2010;115(13):2630-9.
  • 13.Zhu X, Ma SP, Yang D, et al. miR-142-3p Suppresses Cell Growth by Targeting CDK4 in Colorectal Cancer. Cell Physiol Biochem 2018;51(4):1969-81.
  • 14.Zhang Y, Zhang H, Kang H, et al. Knockdown of long non-coding RNA HOST2 inhibits the proliferation of triple negative breast cancer via regulation of the let-7b/CDK6 axis. Int J Mol Med 2019;43:1049-57.
  • 15.Liu Q, Fu H, Sun F, et al. miR-16 family induces cell cycle arrest by regulating multiple cell cycle genes. Nucleic Acids Res 2008;36(16):5391-404.
  • 16.Feng T, Shao F, Wu Q, et al. miR-124 downregulation leads to breast cancer progression via LncRNA-MALAT1 regulation and CDK4/E2F1 signal activation. Oncotarget 2016;7(13):16205-16.
  • 17.Yang X, Xiao Z, Du X, et al. Silencing of the long non-coding RNA NEAT1 suppresses glioma stem-like properties through modulation of the miR-107/CDK6 pathway. Oncol Rep 2017;37(1):555-62.
  • 18.Lemmon MA, Schlessinger J. Cell signaling by receptor tyrosine kinases. Cell 2010;141(7):1117-34.
  • 19.Han S, Chen Y, Gao Y, et al. MicroRNA-218-5p inhibit the migration and proliferation of pterygium epithelial cells by targeting EGFR via PI3K/Akt/mTOR signaling pathway. Exp Eye Res 2018;178:37-45.
  • 20.Wang J, Wang G, Li B, et al. miR-141-3p is a key negative regulator of the EGFR pathway in osteosarcoma. Onco Targets Ther 2018;11:4461-78.
  • 21.Zhang PF, Wu J, Wu Y, et al. The lncRNA SCARNA2 mediates colorectal cancer chemoresistance through a conserved microRNA-342-3p target sequence. J Cell Physiol 2019;234(7):10157-65.
  • 22.Hu J, Qian Y, Peng L, et al. Long noncoding RNA EGFR-AS1 promotes cell proliferation by increasing EGFR mRNA stability in gastric cancer. Cell Physiol Biochem 2018;49(1):322-34.
  • 23.Davies MA, Samuels Y. Analysis of the genome to personalize therapy for melanoma. Oncogene 2010;29(41):5545.
  • 24.Yuan TL, Cantley LC. PI3K pathway alterations in cancer: Variations on a theme. Oncogene 2008;27(41):5497.
  • 25.Wang Y, Chen J, Chen X, et al. MiR-34a suppresses HNSCC growth through modulating cell cycle arrest and senescence Neoplasma 2017;64(4):543-53.
  • 26.Hirata H, Hinoda Y, Ueno K, et al. MicroRNA-1826 targets VEGFC, beta-catenin (CTNNB1) and MEK1 (MAP2K1) in human bladder cancer. Carcinogenesis 2012;33(1):41-8.
  • 27.Li YJ, Wang Y, Wang YY. MicroRNA-99b suppresses human cervical cancer cell activity by inhibiting the PI3K/AKT/mTOR signaling pathway. J Cell Physiol 2019;234(6):9577-91.
  • 28.Li Z, Ma Z, Xu X. Long noncoding RNA MALAT1 correlates with cell viability and mobility by targeting miR223p in renal cell carcinoma via the PI3K/Akt pathway. Oncol Rep 2019;41(2):1113-21.
  • 29.Wang X, Dong K, Jin Q, et al. Upregulation of lncRNA FER1L4 suppresses the proliferation and migration of the hepatocellular carcinoma via regulating PI3K/AKT signal pathway. J Cell Biochem 2018.
  • 30.Amit I, Citri A, Shay T, et al. A module of negative feedback regulators defines growth factor signaling. Nat Genet 2007;39(4):503.
  • 31.Pang L, Li Q, Zhang Y, et al. Transcribed ultraconserved noncoding RNA uc.160 acts as a negative regulator in gastric cancer. Am J Transl Res 2018;10(9):2822-33.
  • 32.Verduci L, Ferraiuolo M, Sacconi A, et al. The oncogenic role of circPVT1 in head and neck squamous cell carcinoma is mediated through the mutant p53/YAP/TEAD transcription-competent complex. Genome Biol 2017;18(1):237.
  • 33.Vannini I, Wise PM, Challagundla KB, et al. Transcribed ultraconserved region 339 promotes carcinogenesis by modulating tumor suppressor microRNAs. Nat Commun 2017;8(1):1801.
  • 34.Kotake Y, Nakagawa T, Kitagawa K, et al. Long non-coding RNA ANRIL is required for the PRC2 recruitment to and silencing of p15(INK4B) tumor suppressor gene. Oncogene 2011;30(16):1956-62.
  • 35.Dong X, Jin Z, Chen Y, et al. Knockdown of long non-coding RNA ANRIL inhibits proliferation, migration, and invasion but promotes apoptosis of human glioma cells by upregulation of miR-34a. J Cell Biochem 2018;119(3):2708-18.
  • 36.Xu ST, Xu JH, Zheng ZR, et al. Long non-coding RNA ANRIL promotes carcinogenesis via sponging miR-199a in triple-negative breast cancer. Biomed Pharmacother 2017;96:14-21.
  • 37.Coccia EM, Cicala C, Charlesworth A, et al. Regulation and expression of a growth arrest-specific gene (gas5) during growth, differentiation, and development. Mol Cell Biol 1992;12(8):3514-21.
  • 38.Armenia J, Fabris L, Lovat F, et al. Contact inhibition modulates intracellular levels of miR-223 in a p27kip1-dependent manner. Oncotarget 2014;5(5):1185-97.
  • 39.Hengartner MO. Apoptosis. Cell 2001;104(3):325-8.
  • 40.Cimmino A, Calin GA, Fabbri M, et al. miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci U S A 2005;102(39):13944-9.
  • 41.Kim KB, Kim K, Bae S, et al. MicroRNA-1290 promotes asiatic acidinduced apoptosis by decreasing BCL2 protein level in A549 nonsmall cell lung carcinoma cells. Oncol Rep 2014;32(3):1029-36.
  • 42.Sun C, Liu Z, Li S, et al. Down-regulation of c-Met and Bcl2 by microRNA-206, activates apoptosis, and inhibits tumor cell proliferation, migration and colony formation. Oncotarget 2015;6(28):25533-74.
  • 43.Gupta RA, Shah N, Wang KC, et al. Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature 2010;464(7291):1071-6.
  • 44.Hung T, Wang Y, Lin MF, et al. Extensive and coordinated transcription of noncoding RNAs within cell-cycle promoters. Nat Genet 2011;43(7):621.
  • 45.Blasco MA. Telomeres and human disease: Ageing, cancer and beyond. Nat Rev Genet 2005;6(8):611.
  • 46.Feng J, Funk WD, Wang S-S, et al. The RNA component of human telomerase. Science. 1995;269(5228):1236-41
  • 47.Redon S, Reichenbach P, Lingner J. The non-coding RNA TERRA is a natural ligand and direct inhibitor of human telomerase. Nucleic Acids Res 2010;38(17):5797-806.
  • 48.Dinami R, Petti E, Sestito R, et al. microRNAs control the function of telomeres in cancer. RNA & DISEASE 2014;1(1):e282.
  • 49.Bergers G, Benjamin LE. Angiogenesis: Tumorigenesis and the angiogenic switch. Nature reviews cancer 2003;3(6):401.
  • 50.Carmeliet P. VEGF as a key mediator of angiogenesis in cancer. Oncology 2005;69(Suppl. 3):4-10.
  • 51.Lawler J. Thrombospondin-1 as an endogenous inhibitor of angiogenesis and tumor growth. J Cell Mol Med 2002;6(1):1-12.
  • 52.Raza A, Franklin MJ, Dudek AZ. Pericytes and vessel maturation during tumor angiogenesis and metastasis. Am J Hematol 2010;85(8):593-8.
  • 53.Sanchez V, Golyardi F, Mayaki D, et al. Negative regulation of angiogenesis by novel micro RNAs. Pharmacol Res 2018;139:173-81.
  • 54.Thrash-Bingham CA, Tartof KD. aHIF: A natural antisense transcript overexpressed in human renal cancer and during hypoxia. J Natl Cancer I 1999;91(2):143-51.
  • 55.Cayre A, Rossignol F, Clottes E, et al. aHIF but not HIF-1a transcript is a poor prognostic marker in human breast cancer. Breast Cancer Res 2003;5(6):R223.
  • 56.Xia Y, Krukoff TL. Estrogen induces nitric oxide production via activation of constitutive nitric oxide synthases in human neuroblastoma cells. Endocrinology 2004;145(10):4550-7.
  • 57.Kalluri R, Weinberg RA. The basics of epithelial-mesenchymal transition. J Clin Invest 2009;119(6):1420-8.
  • 58.Liu YN, Yin JJ, Abou-Kheir W, et al. MiR-1 and miR-200 inhibit EMT via Slug-dependent and tumorigenesis via Slug-independent mechanisms. Oncogene 2013;32(3):296.
  • 59.Hill L, Browne G, Tulchinsky E. ZEB/miR-200 feedback loop: At the crossroads of signal transduction in cancer. Int J Cancer 2013;132(4):745-54.
  • 60.Yu X, Zheng H, Chan MTV, et al. HULC: An oncogenic long non-coding RNA in human cancer. J Cell Mol Med 2017;21(2):410-7
  • 61.Yang T, He X, Chen A, et al. LncRNA HOTAIR contributes to the malignancy of hepatocellular carcinoma by enhancing epithelial-mesenchymal transition via sponging miR-23b-3p from ZEB1. Gene 2018;670:114-22.
  • 62.Ji P, Diederichs S, Wang W, et al. MALAT-1, a novel noncoding RNA, and thymosin beta4 predict metastasis and survival in early-stage non-small cell lung cancer. Oncogene 2003;22(39):8031.
  • 63.Berdasco M, Esteller M. Aberrant epigenetic landscape in cancer: how cellular identity goes awry. Dev Cell 2010;19(5):698-711.
  • 64.Fornari F, Gramantieri L, .Giovannini C, et al. MiR-122/cyclin G1 interaction modulates p53 activity and affects doxorubicin sensitivity of human hepatocarcinoma cells. Cancer Res 2009;69(14):5761-7.
  • 65.Park S-Y, Lee JH, Ha M, et al. miR-29 miRNAs activate p53 by targeting p85a and CDC42. Nat Struct Mol Biol 2009;16(1):23.
  • 66.Chang T-C, Wentzel EA, Kent OA, et al. Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis. Mol Cell 2007;26(5):745-52.
  • 67.Luo Y, Tong L, Meng H, et al. MiR-335 regulates the chemo-radioresistance of small cell lung cancer cells by targeting PARP-1. Gene 2017;600:9-15.
  • 68.Guo P, Lan J, Ge J, et al. miR-708 acts as a tumor suppressor in human glioblastoma cells. Oncol Rep 2013;30(2):870-6.
  • 69.Calin GA, Sevignani C, Dumitru CD, et al. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci U S A 2004;101(9):2999-3004.
  • 70.Lee S, Kopp F, Chang T-C, et al. Noncoding RNA NORAD regulates genomic stability by sequestering PUMILIO proteins. cell 2016;164(1):69-80.
  • 71.Kutty RK, Nagineni CN, Samuel W, et al. Inflammatory cytokines regulate microRNA-155 expression in human retinal pigment epithelial cells by activating JAK/STAT pathway. Biochem Biophys Res Commun 2010;402(2):390-5.
  • 72.House SW, Warburg O, Burk D, et al. On respiratory impairment in cancer cells. Science 1956;124(3215):267-72.
  • 73.Jones RG, Thompson CB. Tumor suppressors and cell metabolism: A recipe for cancer growth. Genes Dev 2009;23(5):537-48.
  • 74.Song J, Wu X, Liu F, et al. Long non-coding RNA PVT1 promotes glycolysis and tumor progression by regulating miR-497/HK2 axis in osteosarcoma. Biochem Biophys Res Commun 2017;490(2):217-24.
  • 75.Park Y-Y, Kim S-B, Han HD, et al. Tat-activating regulatory DNA-binding protein regulates glycolysis in hepatocellular carcinoma by regulating the platelet isoform of phosphofructokinase through microRNA 520. Hepatology 2013;58(1):182-91.,
  • 76.Wong TS, Liu XB, Chunga-Wai Ho A, et al. Identification of pyruvate kinase type M2 as potential oncoprotein in squamous cell carcinoma of tongue through microRNA profiling. Int J Cancer 2008;123(2):251-7.
  • 77.Yang F, Zhang H, Mei Y, et al. Reciprocal regulation of HIF-1a and lincRNA-p21 modulates the Warburg effect. Mol Cell 2014;53(1):88-100.
  • 78.Banerjee A, Schambach F, DeJong CS, et al. Micro-RNA-155 inhibits IFN-gamma signaling in CD4+ T cells. Eur J Immunol 2011;40(1):225-31.
  • 79.Zhao J, Fan Y, Wang K, et al. LncRNA HULC affects the differentiation of Treg in HBV-related liver cirrhosis. Int Immunopharmacol 2015;28(2):901-5.
  • 80.Pei X, Wang X, Li H. LncRNA SNHG1 regulates the differentiation of treg cells and affects the immune escape of breast cancer via regulating miR-448/IDO. Int J Biol Macromol 2018;118(Pt A):24-30.
APA Bozgeyik E (2020). Kanserin Ayırt Edici Özelliklerinde Kodlanmayan RNA'ların Rolü: Güncel Bir Bakış. , 381 - 396. 10.30733/std.2020.01268
Chicago Bozgeyik Esra Kanserin Ayırt Edici Özelliklerinde Kodlanmayan RNA'ların Rolü: Güncel Bir Bakış. (2020): 381 - 396. 10.30733/std.2020.01268
MLA Bozgeyik Esra Kanserin Ayırt Edici Özelliklerinde Kodlanmayan RNA'ların Rolü: Güncel Bir Bakış. , 2020, ss.381 - 396. 10.30733/std.2020.01268
AMA Bozgeyik E Kanserin Ayırt Edici Özelliklerinde Kodlanmayan RNA'ların Rolü: Güncel Bir Bakış. . 2020; 381 - 396. 10.30733/std.2020.01268
Vancouver Bozgeyik E Kanserin Ayırt Edici Özelliklerinde Kodlanmayan RNA'ların Rolü: Güncel Bir Bakış. . 2020; 381 - 396. 10.30733/std.2020.01268
IEEE Bozgeyik E "Kanserin Ayırt Edici Özelliklerinde Kodlanmayan RNA'ların Rolü: Güncel Bir Bakış." , ss.381 - 396, 2020. 10.30733/std.2020.01268
ISNAD Bozgeyik, Esra. "Kanserin Ayırt Edici Özelliklerinde Kodlanmayan RNA'ların Rolü: Güncel Bir Bakış". (2020), 381-396. https://doi.org/10.30733/std.2020.01268
APA Bozgeyik E (2020). Kanserin Ayırt Edici Özelliklerinde Kodlanmayan RNA'ların Rolü: Güncel Bir Bakış. Selçuk Tıp Dergisi, 36(4), 381 - 396. 10.30733/std.2020.01268
Chicago Bozgeyik Esra Kanserin Ayırt Edici Özelliklerinde Kodlanmayan RNA'ların Rolü: Güncel Bir Bakış. Selçuk Tıp Dergisi 36, no.4 (2020): 381 - 396. 10.30733/std.2020.01268
MLA Bozgeyik Esra Kanserin Ayırt Edici Özelliklerinde Kodlanmayan RNA'ların Rolü: Güncel Bir Bakış. Selçuk Tıp Dergisi, vol.36, no.4, 2020, ss.381 - 396. 10.30733/std.2020.01268
AMA Bozgeyik E Kanserin Ayırt Edici Özelliklerinde Kodlanmayan RNA'ların Rolü: Güncel Bir Bakış. Selçuk Tıp Dergisi. 2020; 36(4): 381 - 396. 10.30733/std.2020.01268
Vancouver Bozgeyik E Kanserin Ayırt Edici Özelliklerinde Kodlanmayan RNA'ların Rolü: Güncel Bir Bakış. Selçuk Tıp Dergisi. 2020; 36(4): 381 - 396. 10.30733/std.2020.01268
IEEE Bozgeyik E "Kanserin Ayırt Edici Özelliklerinde Kodlanmayan RNA'ların Rolü: Güncel Bir Bakış." Selçuk Tıp Dergisi, 36, ss.381 - 396, 2020. 10.30733/std.2020.01268
ISNAD Bozgeyik, Esra. "Kanserin Ayırt Edici Özelliklerinde Kodlanmayan RNA'ların Rolü: Güncel Bir Bakış". Selçuk Tıp Dergisi 36/4 (2020), 381-396. https://doi.org/10.30733/std.2020.01268