Yıl: 2021 Cilt: 37 Sayı: 1 Sayfa Aralığı: 1 - 10 Metin Dili: İngilizce DOI: 10.4274/eamr.galenos.2021.44153 İndeks Tarihi: 28-06-2021

New Developments in Oncological Treatment: Targeted Treatments and Immunotherapy

Öz:
In the last 20 years, when we started to understand cancer biology better, targeted therapies and immunotherapies have been developed insystemic treatments and they have started to take their place as monotherapy or combined therapies in routine practice. Treatments thataffect specific molecules are called targeted therapies. Monoclonal antibodies (mAbs), tyrosine kinase inhibitors (TKIs) and those affecting theproliferation cascade constitute the majority of targeted therapies currently used. mAbs are targeted molecules produced from a single B-cellclone by antigen exposure. Most immunotherapeutics currently in use are in the form of mAbs. The targets of mAbs that we frequently use incancer treatment today are human epidermal growth factor receptor-2 (HER-2), epidermal growth factor receptor (EGFR), vascular endothelialgrowth factor, nuclear factor kappa-B ligand receptor activator, programmed death-1 and programmed death ligand-1. Treatments fortyrosine kinases, which play an important role in growth signal modulation, are used in many types of cancer. TKIs are small molecules andare used orally. The most commonly used TKIs are anti-angiogenic multikinase inhibitors. However by the EGFR and anaplastic lymphomakinase inhibitors, a great progress has been made especially in the treatment of non-small cell lung cancer. Again BRAF/MEK, smoothened/hedgehog pathway, poly (ADP-ribose) polymerase, phosphoinositide 3-kinase, HER-2 inhibitors are other TKIs in use. The mammalian targetof rapamycin pathway is also used as a target in many cancers. Immunotherapies are therapies that regulate the immune microenvironment,strengthening the immune system and allowing immune cells to fight against tumor cells. The effect of immunotherapy on cancer cells hasbeen demonstrated by the high dose interferon, which was the first immunotherapy used. It consists of cancer vaccine, oncolytic viruses, exvivo activated T-cell and natural killer cell transfer and immune checkpoint inhibitors. All these treatments contribute significantly to thesurvival and quality of life of patients with more antitumor efficacy. A large number of new molecules are being researched going forward,and promising advances in cancer treatment will continue.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Derleme Erişim Türü: Erişime Açık
  • 1. Pento JT. Monoclonal Antibodies for the Treatment of Cancer. Anticancer Res 2017;37:5935-9.
  • 2. Arora A, Scholar EM. Role of tyrosine kinase inhibitors in cancer therapy. J Pharmacol Exp Ther 2005;315:971-9.
  • 3. Shepard HM, Phillips GL, D Thanos C, Feldmann M. Developments in therapy with monoclonal antibodies and related proteins. Clin Med (Lond) 2017;17:220-32.
  • 4. Wang J, Xu B. Targeted therapeutic options and future perspectives for HER2-positive breast cancer. Signal Transduct Target Ther 2019;4:34.
  • 5. Molina MA, Codony-Servat J, Albanell J, Rojo F, Arribas J, Baselga J. Trastuzumab (herceptin), a humanized anti-Her2 receptor monoclonal tibody, inhibits basal and activated Her2 ectodomain cleavage in breast cancer cells. Cancer Res 2011;61:4744-49.
  • 6. Chemielowski B. Systemic Therapy Agents. Chemielowski B, Territo M, editors. Manuel of Clinical Oncology 8th ed. 2017.pp.50-124.
  • 7. Wang C, Chen J, Xu X, Hu X, Kong D, Liang G, et al. Dual HER2 Blockade in Neoadjuvant Treatment of HER2+ Breast Cancer: A Meta-Analysis and Review. Technol Cancer Res Treat 2020;19:1533033820960721.
  • 8. Boyraz B, Sendur MA, Aksoy S, Babacan T, Roach EC, Kizilarslanoglu MC, et al. Trastuzumab emtansine (T-DM1) for HER2-positive breast cancer. Curr Med Res Opin 2013;29:405-14.
  • 9. Baron JM, Boster BL, Barnett CM. Ado-trastuzumab emtansine (T-DM1): a novel antibody-drug conjugate for the treatment of HER2-positive metastatic breast cancer. J Oncol Pharm Pract 2015;21:132-42.
  • 10. Lambert JM, Chari RV. Ado-trastuzumab Emtansine (T-DM1): an antibody-drug conjugate (ADC) for HER2-positive breast cancer. J Med Chem 2014;57:6949-64.
  • 11. Bang YJ, Giaccone G, Im SA, Oh DY, Bauer TM, Nordstrom JL, et al. Firstin-human phase 1 study of margetuximab (MGAH22), an Fc-modified chimeric monoclonal antibody, in patients with HER2-positive advanced solid tumors. Ann Oncol 2017;28:855-61.
  • 12. Modi S, Saura C, Yamashita T, Park YH, Kim SB, Tamura K, et al. Trastuzumab Deruxtecan in Previously Treated HER2-Positive Breast Cancer. N Engl J Med 2020;382:610-21.
  • 13. Rowland A, Dias MM, Wiese MD, Kichenadasse G, McKinnon RA, Karapetis CS, et al. Meta-analysis of BRAF mutation as a predictive biomarker of benefit from anti-EGFR monoclonal antibody therapy for RAS wild-type metastatic colorectal cancer. Br J Cancer 2015;112:1888-94.
  • 14. Chu E. Cancer Chemotherapy. Katzung BG, editors. Basic and Clinical Pharmacology 14th ed. 2018;54:948-1002.
  • 15. Denda T, Sakai D, Hamaguchi T, Sugimoto N, Ura T, Yamazaki K, et al. Phase II trial of aflibercept with FOLFIRI as a second-line treatment for Japanese patients with metastatic colorectal cancer. Cancer Sci 2019;110:1032-43.
  • 16. Gotink KJ, Verheul HM. Anti-angiogenic tyrosine kinase inhibitors: what is their mechanism of action? Angiogenesis 2010;13:1-14.
  • 17. Imai K, Takaoka A. Comparing antibody and small-molecule therapies for cancer. Nat Rev Cancer 2006;6:714-27.
  • 18. Ivy SP, Wick JY, Kaufman BM. An overview of small-molecule inhibitors of VEGFR signaling. Nat Rev Clin Oncol 2009;6:569-79.
  • 19. Ouyang B, Knauf JA, Smith EP, Zhang L, Ramsey T, Yusuff N, et al. Inhibitors of Raf kinase activity block growth of thyroid cancer cells with RET/PTC or BRAF mutations in vitro and in vivo. Clin Cancer Res 2006;12:1785-93.
  • 20. Qin S, Li A, Yi M, Yu S, Zhang M, Wu K. Recent advances on antiangiogenesis receptor tyrosine kinase inhibitors in cancer therapy. J Hematol Oncol 2019;12:27.
  • 21. Ribatti D, Nico B, Crivellato E, Roccaro AM, Vacca A. The history of the angiogenic switch concept. Leukemia 2007;21:44-52.
  • 22. Zhao Y, Adjei AA. Targeting Angiogenesis in Cancer Therapy: Moving Beyond Vascular Endothelial Growth Factor. Oncologist 2015;20:660- 73.
  • 23. Ancker OV, Krüger M, Wehland M, Infanger M, Grimm D. Multikinase Inhibitor Treatment in Thyroid Cancer. Int J Mol Sci 2019;21:10.
  • 24. Budolfsen C, Faber J, Grimm D, Krüger M, Bauer J, Wehland M, et al. Tyrosine Kinase Inhibitor-Induced Hypertension: Role of Hypertension as a Biomarker in Cancer Treatment. Curr Vasc Pharmacol 2019;17:618- 34.
  • 25. Fallahi P, Ferrari SM, Santini F, Corrado A, Materazzi G, Ulisse S, et al. Sorafenib and thyroid cancer. BioDrugs 2013;27:615-28.
  • 26. Frampton JE. Pazopanib: a Review in Advanced Renal Cell Carcinoma. Target Oncol 2017;12:543-54.
  • 27. Schlumberger M, Tahara M, Wirth LJ, Robinson B, Brose MS, Elisei R, et al. Lenvatinib versus placebo in radioiodine-refractory thyroid cancer. N Engl J Med 2015;372:621-30.
  • 28. Guo T, Liu P, Yang J, Wu P, Chen B, Liu Z, et al. Evaluation of Targeted Agents for Advanced and Unresectable Hepatocellular Carcinoma: A Network Meta-Analysis. J Cancer 2019;10:4671-8.
  • 29. Jindal A, Thadi A, Shailubhai K. Hepatocellular Carcinoma: Etiology and Current and Future Drugs. J Clin Exp Hepatol 2019;9:221-32.
  • 30. de la Fouchardière C. Regorafenib in the treatment of metastatic colorectal cancer. Future Oncol 2018;14:2239-46.
  • 31. Zarrabi K, Fang C, Wu S. New treatment options for metastatic renal cell carcinoma with prior anti-angiogenesis therapy. J Hematol Oncol 2017;10:38.
  • 32. Murtuza A, Bulbul A, Shen JP, Keshavarzian P, Woodward BD, Lopez-Diaz FJ, et al. Novel Third-Generation EGFR Tyrosine Kinase Inhibitors and Strategies to Overcome Therapeutic Resistance in Lung Cancer. Cancer Res 2019;79:689-98.
  • 33. Offin M, Rizvi H, Tenet M, Ni A, Sanchez-Vega F, Li BT, et al. Tumor Mutation Burden and Efficacy of EGFR-Tyrosine Kinase Inhibitors in Patients with EGFR-Mutant Lung Cancers. Clin Cancer Res 2019;25:1063-9.
  • 34. Sullivan I, Planchard D. Next-Generation EGFR Tyrosine Kinase Inhibitors for Treating EGFR-Mutant Lung Cancer beyond First Line. Front Med (Lausanne) 2017;3:76.
  • 35. Elliott J, Bai Z, Hsieh SC, Kelly SE, Chen L, Skidmore B, et al. ALK inhibitors for non-small cell lung cancer: A systematic review and network metaanalysis. PLoS One 2020;15:0229179.
  • 36. Schrank Z, Chhabra G, Lin L, Iderzorig T, Osude C, Khan N, et al. Current Molecular-Targeted Therapies in NSCLC and Their Mechanism of Resistance. Cancers (Basel) 2018;10:224.
  • 37. Peters S, Camidge DR, Shaw AT, Gadgeel S, Ahn JS, Kim DW, et al. Alectinib versus Crizotinib in Untreated ALK-Positive Non-Small-Cell Lung Cancer. N Engl J Med 2017;377:829-38.
  • 38. Shaw AT, Felip E, Bauer TM, Besse B, Navarro A, Postel-Vinay S, et al. Lorlatinib in non-small-cell lung cancer with ALK or ROS1 rearrangement: an international, multicentre, open-label, single-arm first-in-man phase 1 trial. Lancet Oncol 2017;18:1590-9.
  • 39. Shaw AT, Bauer TM, de Marinis F, Felip E, Goto Y, Liu G, et al. First-Line Lorlatinib or Crizotinib in Advanced ALK-Positive Lung Cancer. N Engl J Med 2020;383:2018-29.
  • 40. Spring LM, Wander SA, Zangardi M, Bardia A. CDK 4/6 Inhibitors in Breast Cancer: Current Controversies and Future Directions. Curr Oncol Rep 2019;21:25.
  • 41. Nurse P, Masui Y, Hartwell L. Understanding the cell cycle. Nat Med 1998;4:1103-6.
  • 42. Sherr CJ. Cancer cell cycles. Science 1996;274:1672-7.
  • 43. Malumbres M. Therapeutic opportunities to control tumor cell cycles. Clin Transl Oncol 2006;8:399-408.
  • 44. Hunt T, Nasmyth K, Novák B. The cell cycle. Philos Trans R Soc Lond Ser B Biol Sci. 2011;366:3494-7.
  • 45. Schettini F, De Santo I, Rea CG, De Placido P, Formisano L, Giuliano M, et al. CDK 4/6 Inhibitors as Single Agent in Advanced Solid Tumors. Front Oncol 2018;8:608.
  • 46. Hamilton E, Infante JR. Targeting CDK4/6 in patients with cancer. Cancer Treat Rev 2016;45:129-38.
  • 47. Knudsen ES, Hutcheson J, Vail P, Witkiewicz AK. Biological specificity of CDK4/6 inhibitors: dose response relationship, in vivo signaling, and composite response signature. Oncotarget 2017;8:43678-91.
  • 48. Grimaldi AM, Simeone E, Festino L, Vanella V, Strudel M, Ascierto PA. MEK Inhibitors in the Treatment of Metastatic Melanoma and Solid Tumors. Am J Clin Dermatol 2017;18:745-54.
  • 49. Klein O, Clements A, Menzies AM, O’Toole S, Kefford RF, Long GV. BRAF inhibitor activity in V600R metastatic melanoma. Eur J Cancer 2013;49:1073-9.
  • 50. Heinzerling L, Eigentler TK, Fluck M, Hassel JC, Heller-Schenck D, Leipe J, et al. Tolerability of BRAF/MEK inhibitor combinations: adverse event evaluation and management. ESMO Open 2019;4:491.
  • 51. Rugo HS, Lerebours F, Ciruelos E, Drullinsky P, Borrego MR, Neven P et al. Alpelisib (ALP) + fulvestrant (FUL) in patients (pts) with PIK3CAmutated (mut) hormone receptor-positive (HR+), human epidermal growth factor receptor 2-negative (HER2–) advanced breast cancer (ABC) previously treated with cyclin-dependent kinase 4/6 inhibitor (CDKi) + aromatase inhibitor (AI): BYLieve study results. J Clin Oncol 2020; 38(Suppl 15):1006.
  • 52. Cochrane DR, Bernales S, Jacobsen BM, Cittelly DM, Howe EN, D’Amato NC, et al. Role of the androgen receptor in breast cancer and preclinical analysis of enzalutamide. Breast Cancer Res 2014;16:R7.
  • 53. Martín M, Loibl S, von Minckwitz G, Morales S, Martinez N, Guerrero A, et al. Phase III trial evaluating the addition of bevacizumab to endocrine therapy as first-line treatment for advanced breast cancer: the letrozole/fulvestrant and avastin (LEA) study. J Clin Oncol 2015;33:1045-52.
  • 54. Dickler MN, Barry WT, Cirrincione CT, Ellis MJ, Moynahan ME, Innocenti F, et al. Phase III Trial Evaluating Letrozole As First-Line Endocrine Therapy With or Without Bevacizumab for the Treatment of Postmenopausal Women With Hormone Receptor-Positive Advanced-Stage Breast Cancer: CALGB 40503 (Alliance). J Clin Oncol 2016;34:2602-9.
  • 55. Krop IE, Mayer IA, Ganju V, Dickler M, Johnston S, Morales S, et al. Pictilisib for oestrogen receptor-positive, aromatase inhibitorresistant, advanced or metastatic breast cancer (FERGI): a randomised, double-blind, placebo-controlled, phase 2 trial. Lancet Oncol 2016;17:811-21.
  • 56. Baselga J, Dent SF, Cortés J, Im YH, Diéras V, Harbeck N, et al. Phase III study of taselisib (GDC-0032) + fulvestrant (FULV) v FULV in patients (pts) with estrogen receptor (ER)-positive, PIK3CA-mutant (MUT), locally advanced or metastatic breast cancer (MBC): Primary analysis from SANDPIPER. J Clin Oncol 2018;36. https://ascopubs.org/doi/abs/10.1200/JCO.2018.36.18_suppl.LBA1006
  • 57. Ashworth A Part 25: Poly(ADP-ribose) Polymerase Inhibitors, DeVita VT, Lawrence TS, Rosenberg SA Cancer principles and practice of oncology 10th ed. 2015;25:263-6.
  • 58. Watanabe R, Wei L, Huang J. mTOR signaling, function, novel inhibitors, and therapeutic targets. J Nucl Med 2011;52:497-500.
  • 59. Leavitt E, Lask G, Martin S. Sonic Hedgehog Pathway Inhibition in the Treatment of Advanced Basal Cell Carcinoma. Curr Treat Options Oncol 2019;20:84.
  • 60. Jao JC, Evans DB. Pancreatic Neuroendocrine Tumors, DeVita VT, Lawrence TS, Rosenberg SA Cancer principles and practice of oncology 10th edition 2015;85:1205-17.7.
  • 61. Lord CJ, Ashworth A. PARP inhibitors: Synthetic lethality in the clinic. Science 2017;355:1152-8.
  • 62. Bitler BG, Watson ZL, Wheeler LJ, Behbakht K. PARP inhibitors: Clinical utility and possibilities of overcoming resistance. Gynecol Oncol 2017;147:695-704.
  • 63. Esfahani K, Roudaia L, Buhlaiga N, Del Rincon SV, Papneja N, Miller WH Jr. A review of cancer immunotherapy: from the past, to the present, to the future. Curr Oncol 2020;27:87-97.
  • 64. Gulley JL, Madan RA, Pachynski R, Mulders P, Sheikh NA, Trager J, et al. Role of Antigen Spread and Distinctive Characteristics of Immunotherapy in Cancer Treatment. J Natl Cancer Inst 2017;109:261.
  • 65. Science’s Top 10 Breakthroughs of 2013. Science AAAS. http://www. science mag.org/news/2013/12/sciences-top-10-breakthroughs-2013-0. Accessed July 21,2016.
  • 66. Dizon DS, Krilov L, Cohen E, Gangadhar T, Ganz PA, Hensing TA, et al. Clinical Cancer Advances 2016: Annual Report on Progress Against Cancer From the American Society of Clinical Oncology. J Clin Oncol 2016;34:987-1011.
  • 67. Farkona S, Diamandis EP, Blasutig IM. Cancer immunotherapy: the beginning of the end of cancer? BMC Med 2016;14:73.
  • 68. Hu-Lieskovan S, Chemielowski B, Ribas A Chapter 5: Cancer Immunotherapy, Chemielowski B & Territo M Manuel of Clinical Oncology 8th ed. 2017; 5:114-24.
  • 69. Atkins MB, Lotze MT, Dutcher JP, Fisher RI, Weiss G, Margolin K, et al. High-dose recombinant interleukin 2 therapy for patients with metastatic melanoma: analysis of 270 patients treated between 1985 and 1993. J Clin Oncol 1999;17:2105-16.
  • 70. Mougel A, Terme M, Tanchot C. Therapeutic Cancer Vaccine and Combinations With Antiangiogenic Therapies and Immune Checkpoint Blockade. Front Immunol 2019;10:467.
  • 71. Erkal B, Hayretdağ C, Kalkanlı Taş C, Erdoğan NB, Şamlı A, Coşkunpınar E Kanser Aşılarının İmmünoterapötik Açıdan Değerlendirilmesi. İzlek akademik dergi 2018; 1:1-11.
  • 72. Kantoff PW, Higano CS, Shore ND, Berger ER, Small EJ, Penson DF, et al. Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N Engl J Med 2010;363:411-22.
  • 73. Aslan G Kastrasyona dirençli prostat kanserinde immünoterapi: sipuleucel-T. Üroonkoloji bülteni 2012;11:156-8.
  • 74. de Gruijl TD, Janssen AB, van Beusechem VW. Arming oncolytic viruses to leverage antitumor immunity. Expert Opin Biol Ther 2015;15:959-71.
  • 75. Greig SL. Talimogene Laherparepvec: First Global Approval. Drugs 2016;76:147-54.
  • 76. Feins S, Kong W, Williams EF, Milone MC, Fraietta JA. An introduction to chimeric antigen receptor (CAR) T-cell immunotherapy for human cancer. Am J Hematol 2019;94:3-9.
  • 77. Tan S, Li D, Zhu X. Cancer immunotherapy: Pros, cons and beyond. Biomed Pharmacother 2020;124:109821.
  • 78. Walker LS, Sansom DM. The emerging role of CTLA4 as a cell-extrinsic regulator of T cell responses. Nat Rev Immunol 2011;11:852-63.
  • 79. Rowshanravan B, Halliday N, Sansom DM. CTLA-4: a moving target in immunotherapy. Blood 2018;131:58-67.
  • 80. Schadendorf D, Hodi FS, Robert C, Weber JS, Margolin K, Hamid O, et al. Pooled Analysis of Long-Term Survival Data From Phase II and Phase III Trials of Ipilimumab in Unresectable or Metastatic Melanoma. J Clin Oncol 2015;33:1889-94.
  • 81. Francisco LM, Salinas VH, Brown KE, Vanguri VK, Freeman GJ, Kuchroo VK, et al. PD-L1 regulates the development, maintenance, and function of induced regulatory T cells. J Exp Med 2009;206:3015-29.
  • 82. Amarnath S, Mangus CW, Wang JC, Wei F, He A, Kapoor V, et al. The PDL1-PD1 axis converts human TH1 cells into regulatory T cells. Sci Transl Med 2011;3:111-20.
  • 83. Angell HK, Lee J, Kim KM, Kim K, Kim ST, Park SH, et al. PD-L1 and immune infiltrates are differentially expressed in distinct subgroups of gastric cancer. Oncoimmunology 2018;8:1544442.
  • 84. Bian B, Fanale D, Dusetti N, Roque J, Pastor S, Chretien AS, et al. Prognostic significance of circulating PD-1, PD-L1, pan-BTN3As, BTN3A1 and BTLA in patients with pancreatic adenocarcinoma. Oncoimmunology 2019;8:1561120.
  • 85. Kang SH, Keam B, Ahn YO, Park HR, Kim M, Kim TM, et al. Inhibition of MEK with trametinib enhances the efficacy of anti-PD-L1 inhibitor by regulating anti-tumor immunity in head and neck squamous cell carcinoma. Oncoimmunologynm 2018;8:1515057.
  • 86. Mohan N, Hosain S, Zhao J, Shen Y, Luo X, Jiang J, et al. Atezolizumab potentiates Tcell-mediated cytotoxicity and coordinates with FAK to suppress cell invasion and motility in PD-L1(+) triple negative breast cancer cells, Oncoimmunology 2019;8:1624128.
  • 87. Pan Y, Fei Q, Xiong P, Yang J, Zhang Z, Lin X, et al. Synergistic inhibition of pancreatic cancer with anti-PD-L1 and c-Myc inhibitor JQ1. Oncoimmunology 2019;8:1581529.
  • 88. Wolchok JD, Hoos A, O’Day S, Weber JS, Hamid O, Lebbé C, et al. Guidelines for the evaluation of immune therapy activity in solid tumors: immunerelated response criteria. Clin Cancer Res 2009;15:7412-20.
  • 89. Vrankar M, Unk M. Immune RECIST criteria and symptomatic pseudoprogression in non-small cell lung cancer patients treated with immunotherapy. Radiol Oncol 2018;52:365-9.
APA Yılmaz F, oksuzoglu b (2021). New Developments in Oncological Treatment: Targeted Treatments and Immunotherapy. , 1 - 10. 10.4274/eamr.galenos.2021.44153
Chicago Yılmaz Funda,oksuzoglu berna New Developments in Oncological Treatment: Targeted Treatments and Immunotherapy. (2021): 1 - 10. 10.4274/eamr.galenos.2021.44153
MLA Yılmaz Funda,oksuzoglu berna New Developments in Oncological Treatment: Targeted Treatments and Immunotherapy. , 2021, ss.1 - 10. 10.4274/eamr.galenos.2021.44153
AMA Yılmaz F,oksuzoglu b New Developments in Oncological Treatment: Targeted Treatments and Immunotherapy. . 2021; 1 - 10. 10.4274/eamr.galenos.2021.44153
Vancouver Yılmaz F,oksuzoglu b New Developments in Oncological Treatment: Targeted Treatments and Immunotherapy. . 2021; 1 - 10. 10.4274/eamr.galenos.2021.44153
IEEE Yılmaz F,oksuzoglu b "New Developments in Oncological Treatment: Targeted Treatments and Immunotherapy." , ss.1 - 10, 2021. 10.4274/eamr.galenos.2021.44153
ISNAD Yılmaz, Funda - oksuzoglu, berna. "New Developments in Oncological Treatment: Targeted Treatments and Immunotherapy". (2021), 1-10. https://doi.org/10.4274/eamr.galenos.2021.44153
APA Yılmaz F, oksuzoglu b (2021). New Developments in Oncological Treatment: Targeted Treatments and Immunotherapy. European Archives of Medical Research, 37(1), 1 - 10. 10.4274/eamr.galenos.2021.44153
Chicago Yılmaz Funda,oksuzoglu berna New Developments in Oncological Treatment: Targeted Treatments and Immunotherapy. European Archives of Medical Research 37, no.1 (2021): 1 - 10. 10.4274/eamr.galenos.2021.44153
MLA Yılmaz Funda,oksuzoglu berna New Developments in Oncological Treatment: Targeted Treatments and Immunotherapy. European Archives of Medical Research, vol.37, no.1, 2021, ss.1 - 10. 10.4274/eamr.galenos.2021.44153
AMA Yılmaz F,oksuzoglu b New Developments in Oncological Treatment: Targeted Treatments and Immunotherapy. European Archives of Medical Research. 2021; 37(1): 1 - 10. 10.4274/eamr.galenos.2021.44153
Vancouver Yılmaz F,oksuzoglu b New Developments in Oncological Treatment: Targeted Treatments and Immunotherapy. European Archives of Medical Research. 2021; 37(1): 1 - 10. 10.4274/eamr.galenos.2021.44153
IEEE Yılmaz F,oksuzoglu b "New Developments in Oncological Treatment: Targeted Treatments and Immunotherapy." European Archives of Medical Research, 37, ss.1 - 10, 2021. 10.4274/eamr.galenos.2021.44153
ISNAD Yılmaz, Funda - oksuzoglu, berna. "New Developments in Oncological Treatment: Targeted Treatments and Immunotherapy". European Archives of Medical Research 37/1 (2021), 1-10. https://doi.org/10.4274/eamr.galenos.2021.44153