Yıl: 2020 Cilt: 8 Sayı: 18 Sayfa Aralığı: 522 - 547 Metin Dili: Türkçe DOI: 10.7816/nesne-08-18-11 İndeks Tarihi: 10-06-2021

Görsel Yanılsamalar Bağlamında Görsel Algının Esasları

Öz:
Retinadan görsel kortekse iletilen düşük çözünürlüklü, muğlak sinyalin canlı ve anlamlı bir fenomenolojik deneyime dönüşümünde dış dünyadan gelen veri kadar bellekte kodlanan semantik bilgi, figür-arkaplan segmentasyonu ve gruplama ilkeleri ile hâlihazırdaki duygudurum ve beklentiler de büyük rol oynar. Dış dünyanın nesnel özellikleri ile öznel temsili arasındaki uyumsuzluk olarak tanımlayabileceğimiz görsel yanılsamalar, görsel algının yaygın bir özniteliği olup beyindeki karmaşık bilgi işlem sisteminin yapı ve işlevlerine dair anlamlı içgörüler sunar. Bu bağlamda görsel yanılsamalar kısıtlı nöronal ve metabolik kaynakların etkili kullanımına olanaksağlayan optimizasyon stratejilerinin bir sonucu olup; görsel sistemin limitasyonlarını değil, bu limitasyonlarla başa çıkabilmeyi olanaklı kılan doğal çalışma prensiplerini yansıtır. Bu noktadan yola çıkarak bu derlemede bir takım görsel yanılsamalara yer verilecek, bu yanılsamalar bağlamında görsel algının temel çalışma prensipleri listelenip bu prensiplerin işlevlerine dair özet bir çerçeve sunulacaktır.Derleme sonunda Bayesyen çıkarımlar ve psikopatoloji, yanılsamalar ve alfa beyin dalgaları, zaman algısı gibi alandaki son dönem araştırmalara da değinilecek, bu araştırmalar bağlamında güncel çalışmaların gittiği yön tasvir edilecektir.
Anahtar Kelime:

The Principles of Visual Perception Within The Context of Visual Illusions

Öz:
In the transformation of the low-level, ambiguous retinal signal into a vivid and meaningful phenomenological experience, certain aspects are as essential as the input coming from the external environment. The semantic knowledge stored in memory,figure-background segmentation, grouping principles, and current mood and expectations of the person are equally important. Visual illusions, which might be described as the discrepancy between the objective properties of the external world and their subjective representations, is a common feature of the visual perception that provides meaningful insights with regards to the structure and function of the complex information processor in the brain. In this context, visual illusions are the end results of the optimization strategies that allow the effective use of limited neuronal and metabolic resources, and thus reflect the natural working principles while coping with these limitations, rather than restrictions inflicted upon the system. In this review, we present a compilation of illusions andsummarize the key principles of visual perception on the basis of these visual phenomena.In the final section, we also discuss a number of recent topicswithin the context of Bayesian inference and psychopathology, illusions and alpha brain oscillations and time perceptiontodescribe the current directionsin the field.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Derleme Erişim Türü: Erişime Açık
  • Adams, R. A., Stephan, K. E., Brown, H. R., Frith, C. D. ve Friston, K. J. (2013). The computational anatomy of psychosis. Frontiers in Psychiatry, 4, 47.
  • Addams, R. (1834). An account of a peculiar optical phenomenon seen after having looked at a moving body. London and Edinburgh Philosophical Magazine and Journal of Science, 5, 373–374.
  • Albrecht, D. G., Farrar, S. B. ve Hamilton, D. B. (1984). Spatial contrast adaptation characteristics of neurones recorded in the cat's visual cortex. The Journal of Physiology, 347(1), 713-739.
  • Amano, K., Johnston, A. ve Nishida, S. Y. (2007). Two mechanisms underlying the effect of angle of motion direction change on colour–motion asynchrony. Vision Research, 47(5), 687-705.
  • Ayhan, I., Bruno, A., Nishida, S. ve Johnston, A. (2009). The spatial tuning of adaptation-based time compression. Journal of Vision, 9(11), 1-12.
  • Ayhan, I., Bruno, A., Nishida, S. ve Johnston, A. (2011). The effect of luminance signal on the strength of adaptation-induced temporal compression. Journal of Vision, 11(7): 22, 1-17.
  • Baars, B. J. (1997). In the theatre of consciousness. Global workspace theory, a rigorous scientific theory of consciousness. Journal of Consciousness Studies, 4(4), 292-309.
  • Baccus, S. A. ve Meister, M. (2002). Fast and slow contrast adaptation in retinal circuitry. Neuron, 36(5), 909-919.
  • Bar, M. (2005). Top-down facilitation of visual object recognition. In Neurobiology of Attention (sf. 140-145). Academic Press.
  • Bar, M., Kassam, K. S., Ghuman, A. S., Boshyan, J., Schmid, A. M., Dale, A. M., ... ve Halgren, E. (2006). Top-down facilitation of visual recognition. Proceedings of the National Academy of Sciences, 103(2), 449-454.
  • Barlow, H. B. (1961). Possible principles underlying the transformation of sensory messages. Sensory Communication, 1, 217-234.
  • Baumgarten, T. J., Schnitzler, A. ve Lange, J. (2015). Beta oscillations define discrete perceptual cycles in the somatosensory domain. Proceedings of the National Academy of Sciences, 112(39), 12187-12192.
  • Bisenius, S., Trapp, S., Neumann, J. ve Schroeter, M. L. (2015). Identifying neural correlates of visual consciousness with ALE meta-analyses. Neuroimage, 122, 177-187.
  • Blake, R. ve Logothetis, N. K. (2002). Visual competition. Nature Reviews Neuroscience, 3(1), 13-21.
  • Blakemore, C. ve Campbell, F. W. (1969). On the existence of neurones in the human visual system selectively sensitive to the orientation and size of retinal images. The Journal of Physiology, 203(1), 237-260.
  • Blakemore, C., Carpenter, R. H. ve Georgeson, M. A. (1970). Lateral inhibition between orientation detectors in the human visual system. Nature, 228(5266), 37-39.
  • Blakemore, C. ve Nachmias, J. (1971). The orientation specificity of two visual after‐effects. The Journal of Physiology, 213(1), 157-174.
  • Bogdashina, O. (2004). Communication issues in autism and Asperger syndrome: Do we speak the same language?. Jessica Kingsley Publishers.
  • Bonds, A. B. (1991). Temporal dynamics of contrast gain in single cells of the cat striate cortex. Visual Neuroscience, 6(3), 239-255.
  • Bowen, R. W. (1989). Two pulses seen as three flashes: A superposition analysis. Vision Research, 29(4), 409-417.
  • Bruce, C., Desimone, R. ve Gross, C. G. (1981). Visual properties of neurons in a polysensory area in superior temporal sulcus of the macaque. Journal of Neurophysiology, 46(2), 369-384.
  • Bruno, A., Ayhan, I. ve Johnston, A. (2010). Retinotopic adaptation-based visual duration compression. Journal of Vision, 10(10):30, 1-18.
  • Bruno, A., Ayhan, I. ve Johnston, A. (2011). Duration expansion at low luminance levels. Journal of Vision, 11(14), 1-13.
  • Bruno, A., Ayhan, I. ve Johnston, A. (2015). Changes in apparent duration follow shifts in perceptual timing. Journal of Vision, 15(2).
  • Buchsbaum, G. ve Gottschalk, A. (1983). Trichromacy, opponent colours coding and optimum colour information transmission in the retina. Proceedings of the Royal Society of London. Series B. Biological Sciences, 220(1218), 89-113.
  • Bueti, D., van Dongen, E. V. ve Walsh, V. (2008). The role of superior temporal cortex in auditory timing. PLoS ONE, 3(6), e2481.
  • Burns, B. D. ve Pritchard, R. (1971). Geometrical illusions and the response of neurones in the cat's visual cortex to angle patterns. The Journal of Physiology, 213(3), 599-616.
  • Busch, N. A., Dubois, J. ve VanRullen, R. (2009). The phase of ongoing EEG oscillations predicts visual perception. Journal of Neuroscience, 29(24), 7869-7876.
  • Buzsáki, G., Logothetis, N. ve Singer, W. (2013). Scaling brain size, keeping timing: evolutionary preservation of brain rhythms. Neuron, 80(3), 751-764.
  • Campbell, F. W. ve Robson, J. G. (1968). Application of Fourier analysis to the visibility of gratings. Journal of Physiology, 197(3), 551.
  • Cavanagh, P. (1991). What’s up in top-down processing. Representations of Vision: Trends and Tacit Assumptions in Vision Research, 295-304.
  • Clifford, C. W. (2002). Perceptual adaptation: motion parallels orientation. Trends in Cognitive Sciences, 6(3), 136-143.
  • Clifford, C. W., Spehar, B. ve Pearson, J. (2004). Motion transparency promotes synchronous perceptual binding. Vision Research, 44(26), 3073-3080.
  • Creelman, C. D. (1962). Human discrimination of auditory duration. The Journal of the Acoustical Society of America, 34(5), 582-593.
  • Crick, F. (1996). Visual perception: rivalry and consciousness. Nature, 379, 485–486.
  • De Valois, R. L., Abramov, I. ve Jacobs, G. H. (1966). Analysis of response patterns of LGN cells. JOSA, 56(7), 966-977.
  • De Valois, R. L., Cottaris, N. P., Mahon, L. E., Elfar, S. D ve Wilson, J. A. (2000). Spatial and temporal receptive fields of geniculate and cortical cells and directional selectivity. Vision Research, 40(27), 3685-3702.
  • Deroy, O., Chen, Y. C. ve Spence, C. (2014). Multisensory constraints on awareness. Philosophical Transactions of the Royal Society B: Biological Sciences, 369(1641), 20130207.
  • Derrington, A. M., Krauskopf, J. ve Lennie, P. (1984). Chromatic mechanisms in lateral geniculate nucleus of macaque. The Journal of Physiology, 357(1), 241-265.
  • Devinck, F., Delahunt, P. B., Hardy, J. L., Spillmann, L. ve Werner, J. S. (2005). The watercolor effect: quantitative evidence for luminance-dependent mechanisms of long-range color assimilation. Vision Research, 45(11), 1413-1424.
  • De Weert, C. M. ve Spillmann, L. (1995). Assimilation: Asymmetry between brightness and darkness?. Vision Research, 35(10), 1413-1419.
  • Dragoi, V., Sharma, J., Miller, E. K. ve Sur, M. (2002). Dynamics of neuronal sensitivity in visual cortex and local feature discrimination. Nature Neuroscience, 5(9), 883-891.
  • Droit-Volet, S. ve Wearden, J. (2002). Speeding up an internal clock in children? Effects of visual flicker on subjective duration. Quarterly Journal of Experimental Psychology Section B-Comparative and Physiological Psychology, 55(3), 193- 211.
  • Eagleman D. M. (2008). Human time perception and its illusions. Current Opinion in Neurobiology, 18, 131–136.
  • Eagleman, D. M. ve Sejnowski, T. J. (2007). Motion signals bias localization judgments: A unified explanation for the flash-lag, flash-drag, flash-jump, and Frohlich illusions. Journal of Vision, 7(4), 3-3.
  • Engel, A. K., Fries, P., König, P., Brecht, M. ve Singer, W. (1999). Temporal binding, binocular rivalry, and consciousness. Consciousness and Cognition, 8(2), 128-151.
  • Engel, A. K. ve Singer, W. (2001). Temporal binding and the neural correlates of sensory awareness. Trends in Cognitive Sciences, 5(1), 16-25.
  • Fletcher, P. C. ve Frith, C. D. (2009). Perceiving is believing: a Bayesian approach to explaining the positive symptoms of schizophrenia. Nature Reviews Neuroscience, 10(1), 48-58.
  • Foster, D. H. (2011). Color constancy. Vision Research, 51(7), 674-700.
  • Friston, K. (2003). Learning and inference in the brain. Neural Networks, 16, 1325–1352.
  • Friston, K. (2011). What is optimal about motor control?. Neuron, 72(3), 488-498.
  • Friston, K. (2012). Predictive coding, precision and synchrony. Cognitive Neuroscience, 3(3-4), 238-239.
  • Gegenfurtner, K. R., Bloj, M. ve Toscani, M. (2015). The many colours of ‘the dress’. Current Biology, 25(13), 543-544.
  • Gibson, J. J. (1978). The ecological approach to the visual perception of pictures. Leonardo, 11(3), 227-235.
  • Gibson, J. J. (1979). The ecological approach to visual perception. Boston, MA, US.
  • Graham, N. V. S. (1989). Visual pattern analyzers (Vol. 16). Oxford University Press.
  • Gregory, R. L. (1997). Knowledge in perception and illusion. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 352(1358), 1121-1127.
  • Gregory, R. L. (2007). Helmholtz’s principle, Perception, 36, 6, 795–796.
  • Gulbinaite, R., İlhan, B. ve VanRullen, R. (2017). The triple-flash illusion reveals a driving role of alpha-band reverberations in visual perception. Journal of Neuroscience, 37(30), 7219-7230.
  • Gulhan, D. ve Ayhan, I. (2019). Short-term global motion adaptation induces a compression in the subjective duration of dynamic visual events. Journal of Vision, 19(5), 19-19.
  • Haegens, S., Osipova, D., Oostenveld, R. ve Jensen, O. (2010). Somatosensory working memory performance in humans depends on both engagement and disengagement of regions in a distributed network. Human Brain Mapping, 31(1), 26-35.
  • Haggard, P. (2017). Sense of agency in the human brain. Nature Reviews Neuroscience, 18(4), 196. Hartline, H. K., Wagner, H. G. ve Ratliff, F. (1956). Inhibition in the eye of Limulus. The Journal of General Physiology, 39(5), 651-673.
  • Helmholtz, H. ve Southall, J., P., C. (1924). Helmholtz's treatise on physiological optics, The Optical Society of America, Rochester, NY.
  • Hoffman, D. D., Singh, M. ve Prakash, C. (2015). The interface theory ofperception. Psychonomic Bulletin & Review, 22(6), 1480-1506.
  • Hommel, B., Ridderinkhof, R. K. ve Theeuwes, J. (2002). Cognitive control of attention and action: Issues and trends. Psychological Research, 66(4), 215.
  • Hosoya, T., Baccus, S. A. ve Meister, M. (2005). Dynamic predictive coding by the retina. Nature, 436(7047), 71-77.
  • Hubel, D. H. ve Wiesel, T. N. (1962). Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. The Journal of Physiology, 160(1), 106-154.
  • Hubel, D. H. ve Wiesel, T. N. (1966). Effects of varying stimulus size and color on single lateral geniculate cells in Rhesus monkeys. Proceedings of the National Academy of Sciences of the United States of America, 55(6), 1345-1346.
  • Humphreys, G. W., Riddoch, M. J. ve Price, C. J. (1997). Top-down processes in object identification: evidence from experimental psychology, neuropsychology and functional anatomy. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 352(1358), 1275-1282.
  • Hurvich, L. M. ve Jameson, D. (1960). Perceived color, induction effects, and opponent-response mechanisms. The Journal of General Physiology, 43(6), 63-80.
  • Ibbotson M. R. (2005). Physiological mechanisms of adaptation in the visual system. In: Fitting the Mind to the World: Adaptation and After-Effects in High-Level Vision, edited by Clifford CWG, Rhodes G. New York: Oxford Univ. Press, 17– 45.
  • Jantzen, K. J., Steinberg, F. L. ve Kelso, J. A. (2005). Functional MRI reveals the existence of modality and coordination-dependent timing networks. Neuroimage, 25(4), 1031-1042.
  • Jastrow, J. (1899). The mind's eye. Popular Science Monthly, 54, 299-312.
  • Jensen, O., Bonnefond, M. ve VanRullen, R. (2012). An oscillatory mechanism for prioritizing salient unattended stimuli. Trends in Cognitive Sciences, 16(4), 200-206.
  • Jensen, O., Gelfand, J., Kounios, J. ve Lisman, J. E. (2002). Oscillations in the alpha band (9–12 Hz) increase with memory load during retention in a short-term memory task. Cerebral Cortex, 12(8), 877-882.
  • Jensen, O. ve Mazaheri, A. (2010). Shaping functional architecture by oscillatory alpha activity: gating by inhibition. Frontiers in Human Neuroscience, 4, 186.
  • Johnston, A., Arnold, D. H. ve Nishida, S. (2006). Spatially localized distortions of event time. Current Biology, 16(5), 472-479.
  • Kilner, J. M., Friston, K. J. ve Frith, C. D. (2007). Predictive coding: an account of the mirror neuron system. Cognitive Processing, 8(3), 159-166.
  • Klimesch, W., Sauseng, P., Hanslmayr, S., Gruber, W. ve Freunberger, R. (2007). Event-related phase reorganization may explain evoked neural dynamics. Neuroscience & Biobehavioral Reviews, 31(7), 1003-1016.
  • Koenderink, J. (2001). Multiple visual worlds. Perception, 30, 1-7.
  • Koenderink, J. (2011). Vision as a user interface. In Human vision and electronic imaging XVI (Vol. 7865, p. 786504). International Society for Optics and Photonics.
  • Koffka, K. (1935). Principles of gestalt psychology, New York: Harcourt Brace
  • Kohn, A. (2007). Visual adaptation: Physiology, mechanisms, and functional benefits. Journal of Neurophysiology, 97(5), 3155-3164.
  • Kok, P., Failing, M. F. ve De Lange, F. P. (2014). Prior expectations evoke stimulus templates in the primary visual cortex. Journal of Cognitive Neuroscience, 26(7), 1546-1554.
  • Kok, P., Jehee, J. F. ve De Lange, F. P. (2012). Less is more: expectation sharpens representations in the primary visual cortex. Neuron, 75(2), 265-270.
  • Köhler, W. (1947). Gestalt psychology; an introduction to new concepts in modern psychology (Rev. ed.). Liveright.
  • Kramer, R. H. ve Davenport, C. M. (2015). Lateral inhibition in the vertebrate retina: the case of the missing neurotransmitter. PLoS Biology, 13(12).
  • Lange, J., Keil, J., Schnitzler, A., van Dijk, H. ve Weisz, N. (2014). The role of alpha oscillations for illusory perception. Behavioural Brain Research, 271, 294-301.
  • Lappe, M. ve Krekelberg, B. (1998). The position of moving objects. Perception, 27(12), 1437-1449.
  • Lee, T. S. ve Mumford, D. (2003). Hierarchical Bayesian inference in the visual cortex. Journal of the Optical Society of America, 20(7), 1434-1448.
  • Lee, T. S., Mumford, D., Romero, R. ve Lamme, V. A. (1998). The role of the primary visual cortex in higher level vision. Vision Research, 38(15-16), 2429-2454.
  • Mamassian, P., Landy, M. ve Maloney, L. T. (2002). Bayesian modelling of visual perception. Probabilistic Models of the Brain, 13-36.
  • Martens, S. ve Wyble, B. (2010). The attentional blink: Past, present, and future of a blind spot in perceptual awareness. Neuroscience & Biobehavioral Reviews, 34(6), 947-957.
  • Mariotte, E. ve Pecquet, J. (1668) Nouvelle découverte touchant la veüe. Leonard.
  • Maus, G. W., Weigelt, S., Nijhawan, R. ve Muckli, L. (2010). Does area V3A predict positions of moving objects?. Frontiers in Psychology, 1, 186.
  • McCollough C (1965) Color adaptation of edge-detectors in the human visual system. Science, 149:1115–1116.
  • Miall, R. C. ve Wolpert, D. M. (1996). Forward models for physiological motorcontrol. Neural Networks, 9(8), 1265-1279.
  • Monnier, P. ve Shevell, S. K. (2003). Large shifts in color appearance from patterned chromatic backgrounds. Nature Neuroscience, 6(8), 801-802.
  • Morrone, M. C., Ross, J. ve Burr, D. (2005). Saccadic eye movements cause compression of time as well as space. Nature Neuroscience, 8(7), 950-954.
  • Moutoussis, K. ve Zeki, S. (1997). A direct demonstration of perceptual asynchrony in vision. Proceedings of the Royal Society of London. Series B: Biological Sciences, 264(1380), 393-399.
  • Movshon J. A ve Lennie P. (1979). Pattern selective adaptation in visual cortical neurones. Nature, 278: 850 – 852.
  • Nagel, T. (1974). What is it like to be a bat?. The Philosophical Review, 83(4), 435-450.
  • Neisser, U. (1968). The processes of vision. Scientific American, 219(3), 204-217.
  • Newton, I. (1984). The Optical Papers of Isaac Newton: Volume 1, The Optical Lectures 1670-1672: Volume 1. The Optical Lectures 1670-1672 (Vol. 1). Cambridge University Press.
  • Nijhawan, R. (1997). Visual decomposition of colour through motion extrapolation. Nature, 386(6620), 66-69.
  • Nishida, S. Y. ve Johnston, A. (2002). Marker correspondence, not processing latency, determines temporal binding of visual attributes. Current Biology, 12(5), 359-368.
  • Noë, A. ve Noë, A. (2004). Action in perception. MIT press.
  • Nour, M. M. ve Nour, J. M. (2015). Perception, illusions and Bayesian inference. Psychopathology, 48(4), 217-221.
  • O'Regan, J. K. ve Noë, A. (2001). A sensorimotor account of vision and visual consciousness. Behavioral and Brain Sciences, 24(5), 939-973.
  • Otazu, X., Parraga, C. A. ve Vanrell, M. (2010). Toward a unified chromatic induction model. Journal of Vision,10(12), 5-5.
  • Pellicano, E. ve Burr, D. (2012). When the world becomes ‘too real’: a Bayesian explanation of autistic perception. Trends in Cognitive Sciences, 16(10), 504-510.
  • Pessoa, L. (1996). Mach bands: How many models are possible? Recent experimental findings and modeling attempts. Vision Research, 36(19), 3205-3227.
  • Pfurtscheller, G., Stancak Jr, A. ve Neuper, C. (1996). Post-movement beta synchronization. A correlate of an idling motor area?. Electroencephalography and Clinical Neurophysiology, 98(4), 281-293.
  • Pinna, B., Brelstaff, G. ve Spillmann, L. (2001). Surface color from boundaries: a new ‘watercolor’illusion. Vision Research, 41(20), 2669-2676.
  • Pinna, B., Werner, J. S. ve Spillmann, L. (2003). The watercolor effect: a new principle of grouping and figure–ground organization. Vision Research, 43(1), 43-52.
  • Pournaghdali, A. ve Schwartz, B. L. (2020). Continuous flash suppression: Known and unknowns. Psychonomic Bulletin & Review, 1-33.
  • Prinz, W. (1997). Perception and action planning. European Journal of Cognitive Psychology, 9(2), 129-154.
  • Ratliff, F. (1965). Mach bands: quantitative studies on neural networks (Vol. 2). Holden-Day, San Francisco London Amsterdam.
  • Roberts, D. M., Fedota, J. R., Buzzell, G. A., Parasuraman, R. ve McDonald, C. G. (2014). Prestimulus oscillations in the alpha band of the EEG are modulated by the difficulty of feature discrimination and predict activation of a sensory discrimination process. Journal of Cognitive Neuroscience, 26(8), 1615-1628.
  • Rogers, S. J. ve Ozonoff, S. (2005). Annotation: What do we know about sensory dysfunction in autism? A critical review of the empirical evidence. Journal of Child Psychology and Psychiatry, 46(12), 1255-1268.
  • Rubin, E. (1915). Synsoplevede figurer. Glydendalske, Kobenhavn
  • Rubin, E. (1921). Visuell wahrgenommene figuren. Gyldendalske Boghandel, Kobenhavn.
  • Rucci, M., Iovin, R., Poletti, M. ve Santini, F. (2007). Miniature eye movements enhance fine spatial detail. Nature, 447(7146), 852-855.
  • Thoreson, W. B. ve Mangel, S. C. (2012). Lateral interactions in the outer retina. Progress in Retinal and Eye Research, 31(5), 407-441.
  • Samaha, J. ve Postle, B. R. (2015). The speed of alpha-band oscillations predicts the temporal resolution of visual perception. Current Biology, 25(22), 2985-2990.
  • Schmack, K., de Castro, A. G. C., Rothkirch, M., Sekutowicz, M., Rössler, H., Haynes, J. D., ... ve Sterzer, P. (2013). Delusions and the role of beliefs in perceptual inference. Journal of Neuroscience, 33(34), 13701-13712.
  • Sclar, G., Maunsell, J. H. ve Lennie, P. (1990). Coding of image contrast in central visual pathways of the macaque monkey. Vision Research, 30(1), 1-10.
  • Sekuler, R. ve Pantle, A. (1967). A model for after-effects of seen movement. Vision Research, 7(5-6), 427-439.
  • Selhorst, J. B. ve Chen, Y. (2009, February). The optic nerve. In Seminars in Neurology (Vol. 29, No. 01, sf. 029-035). Thieme Medical Publishers.
  • Shams, L., Kamitani, Y. ve Shimojo, S. (2000). What you see is what you hear. Nature, 408(6814), 788-788.
  • Shapley, R. ve Enroth-Cugell, C. (1984). Visual adaptation and retinal gain controls. Progress in Retinal Research, 3, 263-346.
  • Shapley, R. M. ve Victor, J. D. (1978). The effect of contrast on the transfer properties of cat retinal ganglion cells. The Journal of Physiology, 285(1), 275-298.
  • Sharpee, T. O., Sugihara, H., Kurgansky, A. V., Rebrik, S. P., Stryker, M. P. ve Miller, K. D. (2006). Adaptive filtering enhances information transmission in visual cortex. Nature, 439(7079), 936-942.
  • Shi, Z. ve Burr, D. (2016). Predictive coding of multisensory timing. Current Opinion in Behavioral Sciences, 8, 200-206.
  • Singer, W. (1998). Consciousness from a neurobiological perspective. Brain and Mind: Evolutionary Perspectives, 72-88.
  • Sterzer, P., Mishara, A. L., Voss, M. ve Heinz, A. (2016). Thought insertion as a self-disturbance: an integration of predictive coding and phenomenological approaches. Frontiers in Human Neuroscience, 10, 502.
  • Stetson, C., Cui, X., Montague, P. R. ve Eagleman, D. M. (2006). Motor-sensory recalibration leads to an illusory reversal of action and sensation. Neuron, 51(5), 651-659.
  • Summerfield, C. ve Egner, T. (2009). Expectation (and attention) in visual cognition. Trends in Cognitive Sciences, 13(9), 403-409.
  • Treisman, M. (2013). The information-processing model of timing (Treisman, 1963): Its sources and further development. Timing & Time Perception, 1(2), 131-158.
  • Treisman, A. (1999). Solutions to the binding problem: progress through controversy and convergence. Neuron, 24(1), 105-125.
  • Treisman, M., Faulkner, A., Naish, P. L. ve Brogan, D. (1990). The internal clock: evidence for a temporal oscillator underlying time perception with some estimates of its characteristic frequency. Perception, 19(6), 705-743.
  • Treisman, M., Faulkner, A. ve Naish, P. L. (1992). On the relation between time perception and the timing of motor action: Evidence for a temporal oscillator controlling the timing of movement. The Quarterly Journal of Experimental Psychology Section A, 45(2), 235-263.
  • Treisman, A. ve Schmidt, H. (1982). Illusory conjunctions in the perception of objects. 1982, 14, 107-141.
  • Tsotsos, J. K. (1997). Limited capacity of any realizable perceptual system is a sufficient reason for attentive behavior. Consciousness and Cognition, 6(2-3), 429-436.
  • Ulanovsky, N., Las, L. ve Nelken, I. (2003). Processing of low-probability sounds by cortical neurons. Nature Neuroscience, 6(4), 391-398.
  • Ungerleider, L. G. ve Haxby, J. V. (1994). ‘What’and ‘where’ in the human brain. Current Opinion in Neurobiology, 4(2), 157-165.
  • van Bezold WM (1876) An introduction to color. New York: Wiley.
  • Van Dijk, H., Nieuwenhuis, I. L. ve Jensen, O. (2010). Left temporal alpha band activity increases during working memory retention of pitches. European Journal of Neuroscience, 31(9), 1701-1707.
  • VanRullen, R. (2016). Perceptual cycles. Trends in Cognitive Sciences, 20(10), 723-735.
  • VanRullen, R. ve Koch, C. (2003). Is perception discrete or continuous?. Trends in Cognitive Sciences, 7(5), 207-213.
  • VanRullen, R., Reddy, L. ve Koch, C. (2006). The continuous wagon wheel illusion is associated with changes in electroencephalogram power at∼ 13 Hz. Journal of Neuroscience, 26(2), 502-507.
  • Vaziri, S., Diedrichsen, J. ve Shadmehr, R. (2006). Why does the brain predict sensory consequences of oculomotor commands? Optimal integration of the predicted and the actual sensory feedback. Journal of Neuroscience, 26(16), 4188-4197.
  • von Holst, E. ve Mittelstaedt, H. (1950). Das reafferenzprinzip. Naturwissenschaften, 37(20), 464-476.
  • von Uexküll, J. (1926). Theoretical biology. New York: Harcourt, Brace & Co.
  • Yuille, A. ve Kersten, D. (2006). Vision as Bayesian inference: analysis by synthesis?. Trends in Cognitive Sciences, 10(7), 301-308.
  • Wade, N. J. (1994). A selective history of the study of motion aftereffects. Perception, 23, 1111–1134.
  • Wade, N. J., Spillmann, L. ve Swanston, M. T. (1996). Visual motion aftereffects: Critical adaptation and test conditions. Vision Research, 36(14), 2167-2175.
  • Wallis, S. A. ve Georgeson, M. A. (2012). Mach bands and multiscale models of spatial vision: the role of first, second, and third derivative operators in encoding bars and edges. Journal of Vision, 12(13), 18-18.
  • Wearden, J. H., Philpott, K. ve Win, T. (1999). Speeding up and (... relatively ...) slowing down an internal clock in humans. Behavioural Processes, 46(1), 63-73.
  • Webster, M. A. (2012). Evolving concepts of sensory adaptation. F1000 Biology Reports, 4.
  • Webster, M. A., Kaping, D., Mizokami, Y. ve Duhamel, P. (2004). Adaptation to natural facial categories. Nature, 428(6982), 557-561.
  • Webster, M. A. ve MacLeod, D. I. (2011). Visual adaptation and face perception. Philosophical Transactions of the Royal Society B: Biological Sciences, 366(1571), 1702-1725.
  • Wertheimer, M. (1923). Laws of organization in perceptual forms. A source book of GestaltPsychology.
  • Wertheimer, M. (1923) Untersuchungen zur Lehre von der Gestalt II. Psychologische Forschung, 4, 301-35.
  • Westheimer, G. (2008). Illusions in the spatial sense of the eye: Geometrical–optical illusions and the neural representation of space. Vision Research, 48(20), 2128-2142.
  • Whitney, D. (2002). The influence of visual motion on perceived position. Trends in Cognitive Sciences, 6(5), 211-216.
  • Whitney, D. ve Murakami, I. (1998). Latency difference, not spatial extrapolation. Nature Neuroscience, 1(8), 656-657.
  • Witzel, Christoph, Hanna Valkova, Thorsten Hansen ve Karl R. Gegenfurtner. "Object knowledge modulates colour appearance." i-Perception, 2,1(2011): 13-49.
  • Wolfe, J. M. ve Cave, K. R. (1999). The psychophysical evidence for a binding problem in human vision. Neuron, 24(1), 11-17.
  • Zeki, S. (1992). The visual image in mind and brain. Scientific American, 267(3), 68-77.
  • Zeki, S. ve Bartels, A. (1998). The asynchrony of consciousness. Proceedings of the Royal Society of London. Series B: Biological Sciences, 265(1405), 1583-1585.
  • Zöllner, F. (1860). Ueber eine neue Art von Pseudoskopie und ihre Beziehungen zu den von Plateau und Oppel beschrieben Bewegungsphaenomenen. Annalen der Physik: 500-523.
APA Ayhan İ, Unal G (2020). Görsel Yanılsamalar Bağlamında Görsel Algının Esasları. , 522 - 547. 10.7816/nesne-08-18-11
Chicago Ayhan İnci,Unal Gunes Görsel Yanılsamalar Bağlamında Görsel Algının Esasları. (2020): 522 - 547. 10.7816/nesne-08-18-11
MLA Ayhan İnci,Unal Gunes Görsel Yanılsamalar Bağlamında Görsel Algının Esasları. , 2020, ss.522 - 547. 10.7816/nesne-08-18-11
AMA Ayhan İ,Unal G Görsel Yanılsamalar Bağlamında Görsel Algının Esasları. . 2020; 522 - 547. 10.7816/nesne-08-18-11
Vancouver Ayhan İ,Unal G Görsel Yanılsamalar Bağlamında Görsel Algının Esasları. . 2020; 522 - 547. 10.7816/nesne-08-18-11
IEEE Ayhan İ,Unal G "Görsel Yanılsamalar Bağlamında Görsel Algının Esasları." , ss.522 - 547, 2020. 10.7816/nesne-08-18-11
ISNAD Ayhan, İnci - Unal, Gunes. "Görsel Yanılsamalar Bağlamında Görsel Algının Esasları". (2020), 522-547. https://doi.org/10.7816/nesne-08-18-11
APA Ayhan İ, Unal G (2020). Görsel Yanılsamalar Bağlamında Görsel Algının Esasları. Nesne Dergisi, 8(18), 522 - 547. 10.7816/nesne-08-18-11
Chicago Ayhan İnci,Unal Gunes Görsel Yanılsamalar Bağlamında Görsel Algının Esasları. Nesne Dergisi 8, no.18 (2020): 522 - 547. 10.7816/nesne-08-18-11
MLA Ayhan İnci,Unal Gunes Görsel Yanılsamalar Bağlamında Görsel Algının Esasları. Nesne Dergisi, vol.8, no.18, 2020, ss.522 - 547. 10.7816/nesne-08-18-11
AMA Ayhan İ,Unal G Görsel Yanılsamalar Bağlamında Görsel Algının Esasları. Nesne Dergisi. 2020; 8(18): 522 - 547. 10.7816/nesne-08-18-11
Vancouver Ayhan İ,Unal G Görsel Yanılsamalar Bağlamında Görsel Algının Esasları. Nesne Dergisi. 2020; 8(18): 522 - 547. 10.7816/nesne-08-18-11
IEEE Ayhan İ,Unal G "Görsel Yanılsamalar Bağlamında Görsel Algının Esasları." Nesne Dergisi, 8, ss.522 - 547, 2020. 10.7816/nesne-08-18-11
ISNAD Ayhan, İnci - Unal, Gunes. "Görsel Yanılsamalar Bağlamında Görsel Algının Esasları". Nesne Dergisi 8/18 (2020), 522-547. https://doi.org/10.7816/nesne-08-18-11