Yıl: 2020 Cilt: 29 Sayı: 3 Sayfa Aralığı: 232 - 241 Metin Dili: İngilizce DOI: 10.5152/turkjnephrol.2020.4103 İndeks Tarihi: 29-07-2022

Molecular Targeted Cancer Therapies and the Kidney

Öz:
Novel, targeted anticancer therapies have increased survival rates in patients. However, the incidence, severity, and pattern of their toxicities are different from those of traditional chemotherapies. The high prevalence of chronic kidney disease in the general population and the increased incidence of cancer highlight the need for nephrology consultation regarding this issue. Here, we review the incidence, mechanisms, and management of adverse renal effects associated with major molecular, targeted cancer therapies. Early diagnosis and prompt intervention in case of adverse renal events are crucial for the proper management of patients with cancer treated with targeted agents.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Derleme Erişim Türü: Erişime Açık
  • 1. DeVita Jr VT, Rosenberg SA. Two hundred years of cancer research. N Engl J Med 2012; 366: 2207-14. [Crossref]
  • 2. Druker BJ, Guilhot F, O'Brien SG, Gathmann I, Kantarjian H, Gattermann N, et al. Five-year follow-up of patients receiving imatinib for chronic myeloid leukemia. N Engl J Med 2006; 355: 2408-17. [Crossref]
  • 3. Gurevich F, Perazella MA. Renal effects of anti-angiogenesis therapy: Update for the internist. Am J Med 2009; 122: 322-8. [Crossref]
  • 4. Malyszko J, Kozlowska K, Kozlowski L, Malyszko J. Nephrotoxicity of anticancer treatment. Nephrol Dial Transplant 2017; 32: 924-36. [Crossref]
  • 5. Izzedine H, Massard C, Spano JP, Goldwasser F, Khayat D, Soria JC. VEGF signalling inhibition-induced proteinuria: Mechanisms, significance and management. Eur J Cancer 2010; 46: 439-48. [Crossref]
  • 6. Maitland ML, Kasza KE, Karrison T, Moshier K, Sit L, Black HR, et al. Ambulatory monitoring detects sorafenib-induced blood pressure elevations on the first day of treatment. Clin Cancer Res 2009; 15: 6250-7. [Crossref]
  • 7. Cai J, Ma H, Huang F, Zhu D, Bi J, Ke Y, et al. Correlation of bevacizumab-induced hypertension and outcomes of metastatic colorectal cancer patients treated with bevacizumab: A systematic review
  • and meta-analysis. World J Surg Oncol 2013; 11: 306. [Crossref] 8. Abbas A, Mirza MM, Ganti AK, Tendulkar K. Renal toxicities of targeted therapies. Target Oncol 2015; 10: 487-99. [Crossref]
  • 9. Izzedine H, Escudier B, Lhomme C, Pautier P, Rouvier P, Gueutin V, et al. Kidney diseases associated with anti-vascular endothelial growth factor (VEGF): An 8-year observational study at a single center. Medicine (Baltimore) 2014; 93: 333-9. [Crossref]
  • 10. Bellini E, Pia A, Brizzi MP, Tampellini M, Torta M, Terzolo M, et al. Sorafenib may induce hypophosphatemia through a fibroblast growth factor-23 (FGF23)-independent mechanism. Ann Oncol 2011; 22: 988-90. [Crossref]
  • 11. Jhaveri KD, Wanchoo R, Sakhiya V, Ross DW, Fishbane S. Adverse renal effects of novel molecular oncologic targeted therapies: A narrative review. Kidney Int Rep 2017; 2: 108-23. [Crossref]
  • 12. Wang-Rosenke Y, Khadzhynov D, Loof T, Mika A, Kawachi H, Neumayer HH, et al. Tyrosine kinases inhibition by Imatinib slows progression in chronic anti-thy1 glomerulosclerosis of the rat. BMC Nephrol 2013; 14: 223. [Crossref]
  • 13. Williams B, Mancia G, Spiering W, Agabiti Rosei E, Azizi M, Burnier M, et al. 2018 ESC/ESH Guidelines for the management of arterial hypertension. Eur Heart J 2018; 39: 3021-104. [Crossref]
  • 14. Porta C, Cosmai L, Gallieni M, Pedrazzoli P, Malberti F. Renal effects of targeted anticancer therapies. Nat Rev Nephrol 2015; 11: 354- 70. [Crossref]
  • 15. Garnier-Viougeat N, Rixe O, Paintaud G, Ternant D, Degenne D, Mouawad R, et al. Nephrol Dial Transplant 2007; 22: 975. [Crossref]
  • 16. Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer 2012; 12: 252-64. [Crossref]
  • 17. Postow MA, Sidlow R, Hellmann MD. Immune-related adverse events associated with immune checkpoint blockade. N Engl J Med 2018; 378: 158-68. [Crossref]
  • 18. Robert C, Long GV, Brady B, Dutriaux C, Maio M, Mortier L, et al. Nivolumab in previously untreated melanoma without BRAF mutation. N Engl J Med 2015; 372: 320-30. [Crossref]
  • 19. Cortazar FB, Marrone KA, Troxell ML, Ralto KM, Hoenig MP, Brahmer JR, et al. Clinicopathological features of acute kidney injury associated with immune checkpoint inhibitors. Kidney Int 2016; 90: 638-47. [Crossref]
  • 20. Koda R, Watanabe H, Tsuchida M, Iino N, Suzuki K, Hasegawa G, et al. Immune checkpoint inhibitor (nivolumab)-associated kidney injury and the importance of recognizing concomitant medications known to cause acute tubulointerstitial nephritis: A case report. BMC Nephrol 2018; 19: 48. [Crossref]
  • 21. Fadel F, El Karoui K, Knebelmann B. Anti-CTLA4 antibody-induced lupus nephritis. N Engl J Med 2009; 361: 211-2. [Crossref]
  • 22. Murakami N, Motwani S, Riella LV. Renal complications of immune checkpoint blockade. Curr Probl Cancer 2017; 41: 100-10. [Crossref]
  • 23. Joshi MN, Whitelaw BC, Palomar MT, Wu Y, Carroll PV. Immune checkpoint inhibitor-related hypophysitis and endocrine dysfunction: Clinical review. Clin Endocrinol (Oxf) 2016; 85: 331-9. [Crossref]
  • 24. Manohar S, Kompotiatis P, Thongprayoon C, Cheungpasitporn W, Herrmann J, Herrmann SM. Programmed cell death protein 1 inhibitor treatment is associated with acute kidney injury and hypocalcemia: Meta-analysis. Nephrol Dial Transplant 2019; 34: 108-17. [Crossref]
  • 25. Kim ES, Hirsh V, Mok T, Socinski MA, Gervais R, Wu YL, et al. Gefitinib versus docetaxel in previously treated non-small-cell lung cancer (INTEREST): A randomised phase III trial. Lancet 2008; 372: 1809-18. [Crossref]
  • 26. Cao Y, Liao C, Tan A, Liu L, Gao F. Meta-analysis of incidence and risk of hypomagnesemia with cetuximab for advanced cancer. Chemotherapy 2010; 56: 459-65. [Crossref]
  • 27. Chen P, Wang L, Li H, Liu B, Zou Z. Incidence and risk of hypomagnesemia in advanced cancer patients treated with cetuximab: A meta-analysis. Oncol Lett 2013; 5: 1915-20. [Crossref]
  • 28. Jhaveri KD, Sakhiya V, Wanchoo R, Ross D, Fishbane S. Renal effects of novel anticancer targeted therapies: A review of the Food and Drug Administration Adverse Event Reporting System. Kidney Int 2016; 90: 706-7. [Crossref]
  • 29. Tejpar S, Piessevaux H, Claes K, Piront P, Hoenderop JG, Verslype C, et al. Magnesium wasting associated with epidermal-growth-factor receptor-targeting antibodies in colorectal cancer: A prospective study. Lancet Oncol 2007; 8: 387-94. [Crossref]
  • 30. Nakopoulou L, Stefanaki K, Boletis J, Papadakis J, Kostakis A, Vosnides G, et al. Immunohistochemical study of epidermal growth factor receptor (EGFR) in various types of renal injury. Nephrol Dial Transplant 1994; 9: 764-9.
  • 31. Porta C, Paglino C, Mosca A. Targeting PI3K/Akt/mTOR signaling in cancer. Front Oncol 2014; 4: 64. [Crossref]
  • 32. Nakagawa S, Nishihara K, Inui K, Masuda S. Involvement of autophagy in the pharmacological effects of the mTOR inhibitor everolimus in acute kidney injury. Eur J Pharmacol 2012; 696: 143-54. [Crossref]
  • 33. Izzedine H, Boostandoot E, Spano JP, Bardier A, Khayat D. Temsirolimus-induced glomerulopathy. Oncology 2009; 76: 170-2. [Crossref]
  • 34. Kaufman B, Mackey JR, Clemens MR, Bapsy PP, Vaid A, Wardley A, et al. Trastuzumab plus anastrozole versus anastrozole alone for the treatment of postmenopausal women with human epidermal growth factor receptor 2-positive, hormone receptor-positive metastatic breast cancer: Results from the randomized phase III TAnDEM study. J Clin Oncol 2009; 27: 5529-37. [Crossref]
  • 35. Russo G, Cioffi G, Di Lenarda A, Tuccia F, Bovelli D, Di Tano G, et al. Role of renal function on the development of cardiotoxicity associated with trastuzumab-based adjuvant chemotherapy for early breast cancer. Intern Emerg Med 2012; 7: 439-46. [Crossref]
  • 36. Micallef RA, Barrett-Lee PJ, Donovan K, Ashraf M, Williams L. Trastuzumab in patients on haemodialysis for renal failure. Clin Oncol (R Coll Radiol) 2007; 19: 559. [Crossref]
  • 37. Piacentini F, Omarini C, Barbieri E. Lapatinib and renal impairment: A case report. Tumori 2013; 99: e134-5. [Crossref]
  • 38. Brosnan EM, Weickhardt AJ, Lu X, Maxon DA, Baron AE, Chonchol M, et al. Drug-induced reduction in estimated glomerular filtration rate in patients with ALK-positive non-small cell lung cancer treated with the ALK inhibitor crizotinib. Cancer 2014; 120: 664-74. [Crossref]
  • 39. Lin YT, Wang YF, Yang JC, Yu CJ, Wu SG, Shih JY, et al. Development of renal cysts after crizotinib treatment in advanced ALK-positive non-small-cell lung cancer. J Thorac Oncol 2014; 9: 1720-5. [Crossref]
  • 40. Wanchoo R, Jhaveri KD, Deray G, Launay-Vacher V. Renal effects of BRAF inhibitors: A systematic review by the Cancer and the Kidney International Network. Clin Kidney J 2016; 9: 245-51. [Crossref]
  • 41. Chaib H, Hoskins BE, Ashraf S, Goyal M, Wiggins RC, Hildebrandt F. Identification of BRAF as a new interactor of PLCepsilon1, the protein mutated in nephrotic syndrome type 3. Am J Physiol Renal Physiol 2008; 294: F93-9. [Crossref]
  • 42. Hurabielle C, Pillebout E, Stehle T, Pages C, Roux J, Schneider P, et al. Mechanisms underpinning increased plasma creatinine levels in patients receiving vemurafenib for advanced melanoma. PloS One 2016; 11: e0149873. [Crossref]
  • 43. Iddawela M, Crook S, George L, Lakkaraju A, Nanayakkara N, Hunt R, et al. Safety and efficacy of vemurafenib in end stage renal failure. BMC Cancer 2013; 13: 581. [Crossref]
  • 44. Gill S, Maus MV, Porter DL. Chimeric antigen receptor T cell therapy: 25 years in the making. Blood Rev 2016; 30: 157-67. [Crossref]
  • 45. Brudno JN, Kochenderfer JN. Toxicities of chimeric antigen receptor T cells: Recognition and management. Blood 2016; 127: 3321- 30. [Crossref]
  • 46. Porter DL, Levine BL, Kalos M, Bagg A, June CH. Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia. N Engl J Med 2011; 365: 725-33. [Crossref]
  • 47. Frey NV, Porter DL. Cytokine release syndrome with novel therapeutics for acute lymphoblastic leukemia. Hematology Am Soc Hematol Educ Program 2016; 2016: 567-72. [Crossref]
  • 48. Fitzgerald JC, Weiss SL, Maude SL, Barrett DM, Lacey SF, Melenhorst JJ, et al. Cytokine release syndrome after chimeric antigen receptor t cell therapy for acute lymphoblastic leukemia. Crit Care Med 2017; 45: e124-31. [Crossref]
  • 49. Teachey DT, Rheingold SR, Maude SL, Zugmaier G, Barrett DM, Seif AE, et al. Cytokine release syndrome after blinatumomab treatment related to abnormal macrophage activation and ameliorated with cytokine-directed therapy. Blood 2013; 121: 5154-7. [Crossref]
APA Baş Aksu Ö, Eren Sadioğlu R, SENGÜL S (2020). Molecular Targeted Cancer Therapies and the Kidney. , 232 - 241. 10.5152/turkjnephrol.2020.4103
Chicago Baş Aksu Özge,Eren Sadioğlu Rezzan,SENGÜL SULE Molecular Targeted Cancer Therapies and the Kidney. (2020): 232 - 241. 10.5152/turkjnephrol.2020.4103
MLA Baş Aksu Özge,Eren Sadioğlu Rezzan,SENGÜL SULE Molecular Targeted Cancer Therapies and the Kidney. , 2020, ss.232 - 241. 10.5152/turkjnephrol.2020.4103
AMA Baş Aksu Ö,Eren Sadioğlu R,SENGÜL S Molecular Targeted Cancer Therapies and the Kidney. . 2020; 232 - 241. 10.5152/turkjnephrol.2020.4103
Vancouver Baş Aksu Ö,Eren Sadioğlu R,SENGÜL S Molecular Targeted Cancer Therapies and the Kidney. . 2020; 232 - 241. 10.5152/turkjnephrol.2020.4103
IEEE Baş Aksu Ö,Eren Sadioğlu R,SENGÜL S "Molecular Targeted Cancer Therapies and the Kidney." , ss.232 - 241, 2020. 10.5152/turkjnephrol.2020.4103
ISNAD Baş Aksu, Özge vd. "Molecular Targeted Cancer Therapies and the Kidney". (2020), 232-241. https://doi.org/10.5152/turkjnephrol.2020.4103
APA Baş Aksu Ö, Eren Sadioğlu R, SENGÜL S (2020). Molecular Targeted Cancer Therapies and the Kidney. Turkish journal of nephrology (Online), 29(3), 232 - 241. 10.5152/turkjnephrol.2020.4103
Chicago Baş Aksu Özge,Eren Sadioğlu Rezzan,SENGÜL SULE Molecular Targeted Cancer Therapies and the Kidney. Turkish journal of nephrology (Online) 29, no.3 (2020): 232 - 241. 10.5152/turkjnephrol.2020.4103
MLA Baş Aksu Özge,Eren Sadioğlu Rezzan,SENGÜL SULE Molecular Targeted Cancer Therapies and the Kidney. Turkish journal of nephrology (Online), vol.29, no.3, 2020, ss.232 - 241. 10.5152/turkjnephrol.2020.4103
AMA Baş Aksu Ö,Eren Sadioğlu R,SENGÜL S Molecular Targeted Cancer Therapies and the Kidney. Turkish journal of nephrology (Online). 2020; 29(3): 232 - 241. 10.5152/turkjnephrol.2020.4103
Vancouver Baş Aksu Ö,Eren Sadioğlu R,SENGÜL S Molecular Targeted Cancer Therapies and the Kidney. Turkish journal of nephrology (Online). 2020; 29(3): 232 - 241. 10.5152/turkjnephrol.2020.4103
IEEE Baş Aksu Ö,Eren Sadioğlu R,SENGÜL S "Molecular Targeted Cancer Therapies and the Kidney." Turkish journal of nephrology (Online), 29, ss.232 - 241, 2020. 10.5152/turkjnephrol.2020.4103
ISNAD Baş Aksu, Özge vd. "Molecular Targeted Cancer Therapies and the Kidney". Turkish journal of nephrology (Online) 29/3 (2020), 232-241. https://doi.org/10.5152/turkjnephrol.2020.4103