Yıl: 2021 Cilt: 24 Sayı: 2 Sayfa Aralığı: 391 - 400 Metin Dili: İngilizce DOI: 10.2339/politeknik.706605 İndeks Tarihi: 18-06-2021

Optimization and finite element modelling of tool wear in milling of Inconel 625 superalloy

Öz:
This study focuses on optimization of cutting conditions and numerical analysis of flank wear in milling of Inconel 625 superalloyusing PVD AlTiN and CVD TiCN/Al2O3/TiN-coated carbide inserts. The milling experiments have been performed in CNCvertical machining centre according to Taguchi L18 orthogonal array. Finite element modelling of tool wear was performed usingDeform 3D software. Analysis of variance was utilized to define the influences of the milling conditions on Vb. The results showedthat the feed rate (with 41.5% contribution rate) is the most important parameter affecting Vb. The linear and quadratic regressionanalyses were used to estimate the results of the test. The regression analysis results showed that the estimated Vb values achievedby the quadratic regression model were more effective compared to the linear regression model. Statistical results revealed that theTaguchi method was successful to define optimum cutting parameters in the milling of Inconel 625.
Anahtar Kelime:

Inconel 625 Alaşımının Frezelenmesinde Takım Aşınmasının Sonlu Elemanlar Yöntemiyle Modellenmesi ve Optimizasyonu

Öz:
Bu çalışma, PVD AlTiN ve CVD TiCN/Al2O3/TiN kaplı karbür uçlar kullanılarak Inconel 625 süper alaşımının frezelenmesinde kesme parametrelerinin optimizasyonuna ve yanak aşınmasının sayısal analizine odaklanmaktadır. Frezeleme deneyleri Taguchi L18 dikey dizinine göre CNC dikey işleme merkezinde gerçekleştirildi.Takım aşınmasının sonlu eleman yöntemiyle modellemesi Deform 3D yazılımı kullanılarak yapıldı. Takım aşınması üzerinde frezeleme şartlarının etkilerini tanımlamak için varyans analizi kullanılmıştır. Varyans analiz sonuçları, ilerleme miktarının (%41.5 katkı oranı ile) Vb'yi etkileyen en önemli parametre olduğunu göstermiştir. Test sonuçlarını tahmin etmek için lineer ve kuadratik regresyon analizleri kullanıldı. Regresyon analizi sonuçları, kuadratik regresyon modeli ile elde edilen tahmini Vb değerlerinin lineer regresyon modeline göre daha etkili olduğunu göstermektedir. İstatistiksel sonuçlar, Taguchi yönteminin Inconel 625 alaşımının frezelenmesinde optimum kesme parametrelerinin belirlenmesinde başarılı olduğunu göstermektedir.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • [1] İnternet: https://www.kennametal.com/content/dam/kennametal/k ennametal/common/Resources/CatalogsLiterature/Metal working/SuperAlloys_material_machining_guide_Aeros pace.pdf.
  • [2] Wang Z., Guan K., Gao M., “The microstructure and mechanical properties of deposited-IN718 by selective laser melting”, Journal of Alloys and Compounds, 513:518–523, (2012).
  • [3]. Jindal P., Santhanam A., Schleinkofer U., Shuster A., “Performance of PVD TiN, TiCN, and TiAlN coated cemented carbide tools in turning”, International Journal of Refractory Metals and Hard Materials, 17: 163–170, (1999).
  • [4] Sokovic M., Kopac J., Dobrzanski L. A., Mikula J., Golombek K., Pakula D., “Cutting Characteristics of PVD and CVD - Coated Ceramic Tool Inserts”, Tribology in Industry, 28:3–8, (2006).
  • [5] Kıvak T., “Optimization of surface roughness and flank wear using the Taguchi method in milling of Hadfield steel with PVD and CVD coated inserts”, Measurement, 50: 19–28, (2014).
  • [6] Horng J. T., Liu N. M., Chiang K. T., “Investigating the machinability evaluation of Hadfield steel in the hard turning with Al2O3/TiC mixed ceramic tool based on the response surface methodology”, Journal of Materials Processing Technology, 208: 532–541, (2008).
  • [7] Chethan Y. D., Ravindra H. V., Krishnegowda Y. T., “Optimization of machining parameters in turning Nimonic-75 using machine vision and acoustic emission signals by Taguchi technique”, Measurement, 144: 144– 154, (2019).
  • [8] Akgün M., Demir H., Çiftçi İ., “Optimization of Surface Roughness in Turning Mg2Si Particle Reinforced Magnesium”, Journal of Polytechnic, 21(3): 645-650, (2018).
  • [9] Yan H., Hua J., Shivpuri R., “Flow stress of AISI H13 die steel in hard machining”, Materials & Design, 28: 272– 277, (2007).
  • [10] Kalyon A., Günay M., Özyürek D., “Application of grey relational analysis based on Taguchi method for optimizing machining parameters in hard turning of high chrome cast iron”, Advances in Manufacturing, 6: 419– 429, (2018).
  • [11] Ulas H. B., Ozkan M. T.,“Turning processes investigation of materials austenitic, martensitic and duplex stainless steels and prediction of cutting forces using artificial neural network (ANN) techniques”, Indian Journal of Engineering and Materials Sciences (IJEMS), 26: 93- 104, (2019).
  • [12] Özlü B., Akgün M., Demir H., “Analysis and Optimization of Effects on Surface Roughness of Cutting Parameters on Turning of AA6061 Alloy”, Gazi Mühendislik Bilimleri Dergisi, 5: 151–158, (2019).
  • [13] Demir H., Gündüz S., Erden M. A., “Influence of the heat treatment on the microstructure and machinability of AISI H13 hot work tool steel”, The International Journal of Advanced Manufacturing Technology, 95: (5-8), 2951-2958, (2018).
  • [14] Özlü B., Demir H., Türkmen M., & Gunduz S., “Investigation of Machinability of Cooled Microalloy Stell in Oil After the Hot Forging with Coated and Uncoated CBN Cutting Tools”, Sigma Journal of Engineering and Natural Sciences, 36: (4), 1165-1174, (2018).
  • [15] Akgün M., Yurtkuran H., Ulaş H. B., “Optimization of Cutting Parameters and Analysis of Effects of Artificial Aging on Machinability of AA7075 Alloy”, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 26(1), 75- 81, (2020).
  • [16] Yaşar N., “Thrust force modelling and surface roughness optimization in drilling of AA-7075: FEM and GRA”, Journal of Mechanical Science and Technology, 33: 4771–4781, (2019).
  • [17] Korkmaz M. E., Günay M., “Finite Element Modelling of Cutting Forces and Power Consumption in Turning of AISI 420 Martensitic Stainless Steel”, Arabian Journal for Science and Engineering, 43: 4863–4870, (2018).
  • [18] İnternet: https://www.kennametal.com/tr/tr/products/ p.1180889.html
  • [19] Özel T., “The influence of friction models on finite element simulations of machining”, International Journal of Machine Tools and Manufacture, 46: 518– 530, (2006).
  • [20] Johnson G. J., Cook W.,“A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures”, In Proceedings of the Seventh International Symposium on Ballistics, The Hague, pp; 541–547, (1983).
  • [21] Dorogoy A., Rittel D., “Determination of the Johnson– Cook Material Parameters Using the SCS Specimen”, Experimental Mechanics, 49: 881, (2008).
  • [22] Takeyama H. M. R., “Basic investigation of tool wear”, ASME J Eng Ind, 85:c38, (1963).
  • [23] Usui E., Shirakashi T. K. T., “Analytical prediction of three dimensional cutting process, part 3: cutting temperature and crater wear of carbide too”. ASME J Eng Ind, 100: 236–243, (1978).
  • [24] Wong T., Kim W., Kwon P., “Experimental support for a model-based prediction of tool wear”, Wear, 257: 790– 798, (2004).
  • [25] Trigger K. J., Chao B. T., “The mechanism of crater wear of cemented carbide tools”, Trans ASME,78:1119, (1956).
  • [26] Deform, T. (2006). 3D Version 6.1 (sp1) User’s Manual. Scientific Forming Technologies Corporation, Columbus OH.
  • [27] Hokka M., Gomon D., Shrot, A., Leemet T., Bäker M., & Kuokkala V. T., “Dynamic behavior and high speed machining of ti-6246 and Alloy 625 superalloys: experimental and modeling approaches”. Experimental Mechanics, 54(2), 199-210, (2014).
  • [28] Lotfi M., Jahanbakhsh M., Akhavan F. A., “Wear estimation of ceramic and coated carbide tools in turning of Inconel 625: 3D FE analysis”, Tribology International, 99: 107–116, (2016).
  • [29] İnternet: https://www.specialmetals.com/assets/smc/documents/al loys/inconel/inconel-alloy-625.pdf.
  • [30] İnternet: https://www.azom.com/article.aspx?ArticleID=4461
  • [31] İnternet: https://www.alloywire.com/products/inconel625/.
  • [32] Cetin M. H., Ozcelik B., Kuram E., Demirbas E., “Evaluation of vegetable based cutting fluids with extreme pressure and cutting parameters in turning of AISI 304L by Taguchi method”, Journal of Cleaner Production, 19: 2049–2056, (2011).
  • [33] Kara F., Öztürk B., “Comparison and optimization of PVD and CVD method on surface roughness and flank wear in hard-machining of DIN 1.2738 mold steel”. Sensor Review, 39: 24–33, (2019).
  • [34] Nas E, Özbek NA “Optimization of the Machining Parameters in Turning of Hardened Hot Work Tool Steel Using Cryogenically Treated Tools”, Surface Review and Letters, 1950177, (2019).
APA AKGÜN M, DEMIR H (2021). Optimization and finite element modelling of tool wear in milling of Inconel 625 superalloy. , 391 - 400. 10.2339/politeknik.706605
Chicago AKGÜN Mahir,DEMIR Halil Optimization and finite element modelling of tool wear in milling of Inconel 625 superalloy. (2021): 391 - 400. 10.2339/politeknik.706605
MLA AKGÜN Mahir,DEMIR Halil Optimization and finite element modelling of tool wear in milling of Inconel 625 superalloy. , 2021, ss.391 - 400. 10.2339/politeknik.706605
AMA AKGÜN M,DEMIR H Optimization and finite element modelling of tool wear in milling of Inconel 625 superalloy. . 2021; 391 - 400. 10.2339/politeknik.706605
Vancouver AKGÜN M,DEMIR H Optimization and finite element modelling of tool wear in milling of Inconel 625 superalloy. . 2021; 391 - 400. 10.2339/politeknik.706605
IEEE AKGÜN M,DEMIR H "Optimization and finite element modelling of tool wear in milling of Inconel 625 superalloy." , ss.391 - 400, 2021. 10.2339/politeknik.706605
ISNAD AKGÜN, Mahir - DEMIR, Halil. "Optimization and finite element modelling of tool wear in milling of Inconel 625 superalloy". (2021), 391-400. https://doi.org/10.2339/politeknik.706605
APA AKGÜN M, DEMIR H (2021). Optimization and finite element modelling of tool wear in milling of Inconel 625 superalloy. Politeknik Dergisi, 24(2), 391 - 400. 10.2339/politeknik.706605
Chicago AKGÜN Mahir,DEMIR Halil Optimization and finite element modelling of tool wear in milling of Inconel 625 superalloy. Politeknik Dergisi 24, no.2 (2021): 391 - 400. 10.2339/politeknik.706605
MLA AKGÜN Mahir,DEMIR Halil Optimization and finite element modelling of tool wear in milling of Inconel 625 superalloy. Politeknik Dergisi, vol.24, no.2, 2021, ss.391 - 400. 10.2339/politeknik.706605
AMA AKGÜN M,DEMIR H Optimization and finite element modelling of tool wear in milling of Inconel 625 superalloy. Politeknik Dergisi. 2021; 24(2): 391 - 400. 10.2339/politeknik.706605
Vancouver AKGÜN M,DEMIR H Optimization and finite element modelling of tool wear in milling of Inconel 625 superalloy. Politeknik Dergisi. 2021; 24(2): 391 - 400. 10.2339/politeknik.706605
IEEE AKGÜN M,DEMIR H "Optimization and finite element modelling of tool wear in milling of Inconel 625 superalloy." Politeknik Dergisi, 24, ss.391 - 400, 2021. 10.2339/politeknik.706605
ISNAD AKGÜN, Mahir - DEMIR, Halil. "Optimization and finite element modelling of tool wear in milling of Inconel 625 superalloy". Politeknik Dergisi 24/2 (2021), 391-400. https://doi.org/10.2339/politeknik.706605