PINAR AYTAR ÇELİK
(Eskişehir Osmangazi Üniversitesi, Çevre Koruma ve Kontrol Programı, Eskişehir, Türkiye)
MEHMET BURÇİN MUTLU
(Eskişehir Teknik Üniversitesi, Fen Fakültesi, Biyoloji Bölümü, Eskişehir, Türkiye)
Ferhan KORKMAZ
(Eskişehir Osmangazi Üniversitesi, Fen-Edebiyat Fakültesi, Biyoloji Bölümü, Eskişehir, Türkiye)
Belma NURAL YAMAN
(Eskişehir Osmangazi Üniversitesi, Biyomedikal Mühendisliği Bölümü, Eskişehir, Türkiye)
Serap GEDİKLİ
(Eskişehir Osmangazi Üniversitesi, Fen-Edebiyat Fakültesi, Biyoloji Bölümü, Eskişehir, Türkiye)
Ahmet ÇABUK
(Eskişehir Osmangazi Üniversitesi, Fen-Edebiyat Fakültesi, Biyoloji Bölümü, Eskişehir, Türkiye)
Yıl: 2021Cilt: 14Sayı: 2ISSN: 1308-5301 / 1308-8084Sayfa Aralığı: 229 - 235İngilizce

36 0
Boron mine ponds: metagenomic insight to bacterial diversity
Since it can be a source of new microorganisms with biological potential, it is important to identify the microorganisms found in environments with high boron content in terms of ecological and biotechnological application potentials. In this context, deposit waters in environments where boron mining activities perform are important habitats for boronophilic/boronotolerant microorganisms.In this study, bacterial community in the waste mining ponds of Balıkesir-Bigadiç and Eskişehir-Kırka Boron Mining Operations were investigated by using 16S rDNA gene-targeted Illumina MiSeq sequencing. The greater parts of high-throughput sequences were related to Proteobacteria, Planctomycetes, Bacteriodetes, Verrucomicrobia and Actinobacteria phyla. Cyanobacteria and Parcubacteria were other notable groups with low abundance. Genera belonged to Blastopirellula, Luteolibacter, Porhyrobacter and Hydrogenophaga were the most abundant taxa for all the samples. Sandarakinorhabdus, Pseudoanabena, Roseinatronobacter and Pontimonas genera-affiliated reads were also detected at in the October samples. Striking seasonal variations were detected between samples in terms of the type and number of microbial populations.
DergiAraştırma MakalesiErişime Açık
  • [1] Böcük, H., Yakar, A. & Türker, O. C. (2013). Assessment of Lemna gibba L. (duckweed) as a potential ecological indicator for contaminated aquatic ecosystem by boron mine effluent. Ecological Indicators, 29, 538– 548. https://doi.org/10.1016/j.ecolind.2013.01.029
  • [2] Kabu M., Kabu, M., Uyarlar, C., Zarczynska, K., Milewska, W. & Sobiech, P. (2015). The role of boron in animal health. Journal of Elementology, 20(2), 535–541. https://doi.org/10.5601/jelem.2014.19.3.706
  • [3] Poyraz, N. & Mutlu, M. B. (2017). Alkaliphilic bacterial diversity of Lake Van/Turkey. Biological Diversity and Conservation, 10(1), 92-103.
  • [4] Gürsu, B. Y., Aytar, P., İlhan, S., Kocabıyık, Y. E., Gedıkli, S. & Çabuk, A. (2017). Diversity of microfungi in acid mine drainages. Biological Diversity and Conservation, 10(3), 190-198.
  • [5] Nural Yaman, B., Deniz Sonmez, G., Aytar Celik, P., Korkmaz, F., Mutlu, M. B. & Cabuk, A. (2019). Culture‐dependent diversity of boron‐tolerant bacteria from boron mine tailings pond and solid wastes. Water and Environment Journal, 33(4), 574–581. https://doi.org/10.1111/wej.12429
  • [6] Miwa, H. & Fujiwara, T. (2009). Isolation and identification of boron-accumulating bacteria from contaminated soils and active sludge. Soil Science and Plant Nutrition, 55(5), 643–646. https://doi.org/10.1111/j.1747- 0765.2009.00402.x
  • [7] Ahmed, I., Yokota, A. & Fujiwara, T. (2007a). Chimaereicella boritolerans sp. Nov., a boron-tolerant and alkaliphilic bacterium of the family Flavobacteriaceae isolated from soil. International Journal of Systematic and Evolutionary Microbiology, 57(5), 986–992. https://doi.org/10.1099/ijs.0.64728-0
  • [8] Ahmed, I., Yokota, A. & Fujiwara, T. (2007b). Gracilibacillus boraciitolerans sp. Nov., a highly boron-tolerant and moderately halotolerant bacterium isolated from soil. International Journal of Systematic and Evolutionary Microbiology, 57(4), 796–802. https://doi.org/10.1099/ijs.0.64284-0
  • [9] Aytar, P., Kay, C. M., Mutlu, M. B., Çabuk, A. & Johnson, D. B. (2015). Diversity of acidophilic prokaryotes at two acid mine drainage sites in Turkey. Environmental Science and Pollution Research, 22(8), 5995–6003. https://doi.org/10.1007/s11356-014-3789-4
  • [10] Çınar, S. & Mutlu, M. B. (2016). Comparative analysis of prokaryotic diversity in solar salterns in eastern Anatolia (Turkey). Extremophiles, 20(5), 589–601. https://doi.org/10.1007/s00792-016-0845-7. [
  • 11] Mutlu, M. B., Martínez-García, M., Santos, F., Peña, A., Guven, K. & Antón, J. (2008). Prokaryotic diversity in Tuz Lake, a hypersaline environment in Inland Turkey: Prokaryotic diversity in an inland Turkish salt lake. FEMS Microbiology Ecology, 65(3), 474–483. https://doi.org/10.1111/j.1574-6941.2008.00510.x
  • [12] Çınar, S. & Mutlu, M. B. (2020). Prokaryotic Community Compositions of the Hypersaline Sediments of Tuz Lake Demonstrated by Cloning and High-Throughput Sequencing. Microbiology, 89(6), 756–768. https://doi.org/10.1134/S0026261720060028
  • [13] Nural Yaman, B., Aytar Çelik, P., Mutlu, M. B. & Çabuk, A. (2020). A Combinational Analysis of Acidophilic Bacterial Diversity of an Iron-Rich Environment. Geomicrobiology Journal, 37(10), 877–889. https://doi.org/10.1080/01490451.2020.1795320
  • [14] Nural Yaman, B., Mutlu, M. B., Aytar Celik, P. & Çabuk, A. (2020). Metagenomics (16S Amplicon Sequencing) and DGGE Analysis of Bacterial Diversity of Acid Mine Drainage. Journal of Microbiology, Biotechnology and Food Sciences, 9(5), 932–936. https://doi.org/10.15414/jmbfs.2020.9.5.932-936
  • [15] Orphan, V. J., Hinrichs, K.-U., Ussler, W., Paull, C. K., Taylor, L. T., Sylva, S. P., Hayes, J. M. & Delong, E. F. (2001). Comparative Analysis of Methane-Oxidizing Archaea and Sulfate-Reducing Bacteria in Anoxic Marine Sediments. Applied and Environmental Microbiology, 67(4), 1922–1934. https://doi.org/10.1128/AEM.67.4.1922-1934.2001
  • [16] Watanabe, K., Watanabe, K., Kodama, Y., Syutsubo, K. & Harayama, S. (2000). Molecular Characterization of Bacterial Populations in Petroleum-Contaminated Groundwater Discharged from Underground Crude Oil Storage Cavities. Applied and Environmental Microbiology, 66(11), 4803–4809. https://doi.org/10.1128/AEM.66.11.4803-4809.2000
  • [17] Handelsman, J., Rondon, M. R., Brady, S. F., Clardy, J. & Goodman, R. M. (1998). Molecular biological access to the chemistry of unknown soil microbes: A new frontier for natural products. Chemistry & Biology, 5(10), R245–R249. https://doi.org/10.1016/S1074-5521(98)90108-9
  • [18] Oulas, A., Pavloudi, C., Polymenakou, P., Pavlopoulos, G. A., Papanikolaou, N., Kotoulas, G., Arvanitidis, C. & Iliopoulos, l. (2015). Metagenomics: Tools and Insights for Analyzing Next-Generation Sequencing Data Derived from Biodiversity Studies. Bioinformatics and Biology Insights, 9, BBI.S12462. https://doi.org/10.4137/BBI.S12462
  • [19] Nural Yaman, B., Mutlu, M. B., Aytar Çelik, P. & Çabuk, A. (2021). Prokaryotic Community Determination of Metal-Rich Acidic Environment by Comparative Methods, Geomicrobiology Journal, 38(6), 504-514. https://doi.org/10.1080/01490451.2021.1897713
  • [20] Helvaci, C. (2003). Türkiye Borat Yatakları Jeolojik Konumu, Ekonomik Önemi ve Bor Politikası. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 5(1).
  • [21] Kozich, J. J., Westcott, S. L., Baxter, N. T., Highlander, S. K. & Schloss, P. D. (2013). Development of a DualIndex Sequencing Strategy and Curation Pipeline for Analyzing Amplicon Sequence Data on the MiSeq Illumina Sequencing Platform. Applied and Environmental Microbiology, 79(17), 5112–5120. https://doi.org/10.1128/AEM.01043-13
  • [22] Yoon, S. H., Ha, S. M., Kwon, S., Lim, J., Kim, Y., Seo, H. & Chun, J. (2017). Introducing EzBioCloud: A taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. International Journal of Systematic and Evolutionary Microbiology, 67(5), 1613–1617. https://doi.org/10.1099/ijsem.0.001755
  • [23] Yarza, P., Yilmaz, P., Pruesse, E., Glöckner, F. O., Ludwig, W., Schleifer, K. H., Whitman, W. B., Euzéby, J., Amann, R. & Rosselló-Móra, R. (2014). Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nature Reviews Microbiology, 12(9), 635–645. https://doi.org/10.1038/nrmicro333
  • [24] Sonthiphand, P., Hall, M. W. & Neufeld, J. D. (2014). Biogeography of anaerobic ammonia-oxidizing (anammox) bacteria. Frontiers in Microbiology, 5. https://doi.org/10.3389/fmicb.2014.00399
  • [25] Trzcińska, M. & Pawlik-Skowrońska, B. (2008). Soil algal communities inhabiting zinc and lead mine spoils. Journal of Applied Phycology, 20(4), 341–348. https://doi.org/10.1007/s10811-007-9259-3
  • [26] Kersters, K., De Vos, P., Gillis, M., Swings, J., Vandamme, P. & Stackebrandt, E. (2006). Introduction to the Proteobacteria. In M. Dworkin, S. Falkow, E. Rosenberg, K.-H. Schleifer, & E. Stackebrandt (Eds.), The Prokaryotes (pp. 3–37). Springer New York. https://doi.org/10.1007/0-387-30745-1
  • [27] Stevens, H., Stübner, M., Simon, M. & Brinkhoff, T. (2005). Phylogeny of Proteobacteria and Bacteroidetes from oxic habitats of a tidal flat ecosystem. FEMS Microbiology Ecology, 54(3), 351–365. https://doi.org/10.1016/j.femsec.2005.04.008

TÜBİTAK ULAKBİM Ulusal Akademik Ağ ve Bilgi Merkezi Cahit Arf Bilgi Merkezi © 2019 Tüm Hakları Saklıdır.