Yıl: 2021 Cilt: 14 Sayı: 2 Sayfa Aralığı: 286 - 291 Metin Dili: Türkçe DOI: 10.46309/biodicon.2021.960618 İndeks Tarihi: 29-07-2022

Ecophysiological responses of Zea mays L. against thermal power plant fly ash applications

Öz:
Thermal power plant fly ash is one of the most important concerns of this form of energy generation, as it isthe most important waste generated by burning coal in a thermal power plant. This kind of fly ash contains elementslike Fe, Al, Si, Ca, Na, and K which can be beneficial or harmful to plants depending on the concentration. To evaluatethe effect of thermal power plant fly ash on the ecological system, it is necessary to analyze the ecophysiologicalresponses of plants. Zea mays L. (corn) is a worldwide consumed plant species that has been cultivated for 10000 yearsand it is an important model organism for genetics and biology. In this study, it was aimed that to observeecophysiological responses of corn against thermal power plant fly ash applications. For the experimental period,control (0 ppm), 500, 1000, 2500, 5000, and 7500 ppm of fly ash applications were set. The experiments took 14 days,and at the end of the experimental period % germination, hypocotyl and radicle lengths, seedling vigor index werecalculated. It was observed that 500 to 5000 ppm fly ash applications were stimulated the seed germination, stem androot development, and also seedling vigor index (SVI), but 7500 ppm fly ash applications were inhibited by allecophysiological parameters. We can say that lower than 5000 ppm fly ash can be useful for agricultural practices,however above 5000 ppm level it is harmful to plant development.
Anahtar Kelime: Zea mays uçucu kül Ekofizyoloji

Zea mays L.'nin termik santral uçucu kül uygulamalarına karşı ekofizyolojik tepkileri

Öz:
Termik santral uçucu külü, bir termik santralde kömür yakılarak üretilen en önemli atık olduğu için bu tür enerji üretiminin en önemli endişelerinden biridir. Bu tür uçucu kül, konsantrasyona bağlı olarak bitkiler için yararlı veya zararlı olabilen Fe, Al, Si, Ca, Na ve K gibi elementler içerir. Termik santral uçucu külünün ekolojik sistem üzerindeki etkisini değerlendirmek için bitkilerin ekofizyolojik tepkilerini analiz etmek gerekir. Zea mays L. (mısır), 10000 yıldır yetiştirilen, dünya çapında tüketilen bir bitki türüdür ve genetik ve biyoloji için önemli bir model organizmadır. Bu çalışmada, termik santral uçucu kül uygulamalarına karşı mısırın ekofizyolojik tepkilerinin gözlemlenmesi amaçlanmıştır. Deney periyodu için kontrol (0 ppm), 500, 1000, 2500, 5000 ve 7500 ppm uçucu kül uygulamaları yapılmıştır. Denemeler 14 gün sürmüş ve deneme süresi sonunda % çimlenme, hipokotil ve kök uzunlukları, fide canlılık indeksi hesaplanmıştır. 500 ila 5000 ppm uçucu kül uygulamalarının tohum çimlenmesini, gövde ve kök gelişimini ve ayrıca SVI'yı uyardığı, ancak 7500 ppm uçucu kül uygulamalarının tüm ekofizyolojik parametreler tarafından engellendiği görülmüştür. 5000 ppm'den daha düşük uçucu külün tarımsal uygulamalar için faydalı olabileceğini, ancak 5000 ppm seviyesinin üzerinde bitki gelişimine zararlı olduğunu söyleyebiliriz.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • [1]. Yao, Z. T., Ji, X. S., Sarker, P. K., Tang, J. H., Ge, L. Q., Xia, M. S., & Xi, Y. Q. (2015). A comprehensive review on the applications of coal fly ash. Earth-Science Reviews, 141, 105-121.
  • [2]. Ferreira, C., Ribeiro, A., & Ottosen, L. (2003). Possible Applications for Municipal Solid Waste Fly Ash. Journal of Hazardous Materials, 96(2-3), 201-216.
  • [3]. Khan, I., & Umar, R. (2019). Environmental risk assessment of coal fly ash on soil and groundwater quality, Aligarh, India. Groundwater for Sustainable Development, 8, 346–357.
  • [4]. Blissett, R.S., & Rowson, N.A. (2012). A review of the multi-component utilisation of coal fly ash. Fuel, 97, 1– 23.
  • [5]. Isik, G., & Leblebici, S. (2016). Seed Germination Behavior of some Safflower (Carthamus tinctorius) Varieties According to Habitat Conditions Containing Different Concentrations of Boric Acid. Pakistan Journal of Botany 48(6):2211-2214.
  • [6]. Abdulbaki, A. A., & Anderson, J. D. (1973). Relationship between decarboxylation of glutamic acid and vigor in soybean seeds. Crop Science, 13, 222-226.
  • [7]. Jala, S., & Goyal, D. (2006). Fly ash as a soil ameliorant for improving crop production – a review. Bioresour Technol, 97(9):1136–47.
  • [8]. Kosnar, Z., Mercl, F., & Tlustos, P. (2018). Ability of natural attenuation and phytoremediation using maize (Zea mays L.) to decrease soil contents of polycyclic aromatic hydrocarbons (PAHs) derived from biomass fly ash in comparison with PAHs–spiked soil. Ecotoxicology and Environmental Safety, 153, 16–22.
  • [9]. Fu, Z. J., Li, W. H., Zhang, Q. B. (2014). Quantitative trait loci for mercury accumulation in maize (Zea mays L.) identified using a RIL population. Plos one, 9(9):1–9.
  • [10]. Dash, A. K., Pradhan, A., Das, S., & Mohanty, S. S. (2015). Fly ash as a potentıal source of soıl amendment ın agrıculture and a component of ıntegrated plant nutrıent supply system. Journal of Industrial Pollution Control, 31(2): 251-259.
  • [11]. Akın, S. S., Magalhães, D., & Kazanc, F. (2020). A study on the effects of various combustion parameters on the mineral composition of Tunçbilek fly ash. Fuel, 275, 117881.
  • [12]. Usmani, Z., Kumar, V., Gupta, P., Gupta, G., Ran, R., & Chandra, A. (2019). Enhanced soil fertility, plant growth promotion and microbial enzymatic activities of vermicomposted fly ash. Scientific Reports, 9(1), 10455
  • [13]. Geetanjali, K., Ravi, M. V., Gaddi, A. K., Shyamarao, M., & Shyamarao, K. (2017). Effect of flyash and organic manures application on growth and yield of maize (Zea mays L.). Agriculture Update, 12(TECHSEAR-5), 1233- 1236.
  • [14]. Meij, R., (1995). The distribution of trace elements during the combustion of coal. In: Swaine, D.J., Goodarzi, F. (Eds.), Environmental Aspects of Trace Elements in Coal. Kluwer Academic Publication, Dordrecht, The Netherlands, pp. 111–127.
  • [15]. Singh, L. P., & Siddiqui, Z. A. (2003). Effects of fly ash and Helminthosporium oryzae on growth and yield of three cultivars of rice. Bioresource Technology, 86, 73–78.
  • [16]. Singh, A., Sharma, K. R., & Agrawal B. S. (2008). Effects of fly ash incorporation on heavy metal accumulation, growth and yield responses of Beta vulgaris plants. Bioresource Technology, 99(15), 7200–7207.
  • [17]. Muduli, S. D., Chaturvedi, N., Mohapatra, P., Dhal, N. K., & Nayak, B. D. (2014). Growth and Physiological Activities of Selected Leguminous Crops Grown in Carbonated Fly Ash Amended Soil. Greener Journal of Agricultural Sciences, 4(3), 083-090.
  • [18]. Singh, L., & Sukul, P. (2019). Impact Ofvermıcompost, Farm Yard Manure, Flyash And Inorganıc Fertılızers On Growth And Yıeld Attrıbutıng Characters Of Maıze (Zea mays L.). Plant Archives, 19(2), 2193-2200.
  • [19]. Coe, E. H. Jr. (2001). The origins of maize genetics. Nature Reviews Genetics, 2, 898–905
  • [20]. Rhoades, M. M. (1984). The early years of maize genetics. Annual Review of Genetics, 18, 1–29
  • [21]. Strable, J., & Scanlon, j. M. (2009). Maize (Zea mays): a model organism for basic and applied research in plant biology. Cold Spring Harbor Protocols, 4(10). https://doi:10.1101/pdb.emo132
  • [22]. Ahmaruzzaman, M. (2010). A review on the utilization of fly ash. Progress in Energy and Combustion Science, 36(3), 327– 363.
  • [23]. Baba, A., Gurdal, G., & Sanliyuksel Yucel, D. (2016). Enrichment of trace element concentrations in coal and its combustion residues and their potential environmental and human health impact: Can Coal Basin, NW Turkey as a case study. International Journal of Environmental Technology and Management, 19(5–6), 455–478.
  • [24]. Ileri, B., & Yucel, S. D. (2020). Metal removal from acid mine lake using ultrasound-assisted modified fly ash at different frequencies. Environmental Monitoring and Assessment, 192(3), 185. https://doi:10.1007/s10661-020- 8150-4
  • [25]. Demir, I., Sevım, O., Ozel, G., & Dogan, O. (2020). Mıcrostructural, Physıcal And Mechanıcal Propertıes Of Aerated Concrete Contaınıng Fly Ash Under Hıgh Temperature And Pressure. Romanian Journal of Materials, 50(2), 240 – 249.
  • [26]. Panigrahi, T., Das, K. K., Das, M., Panda, K. S., & Panda, R. B. (2014). Fly ash and treated waste water effect on improving soil properties and rice productivity: A way for sustainable agriculture practice. Discovery Nature, 7(17), 30-38.
  • [27]. Yücel, E. (2000). Ecological Properties of Pinus nigra ssp. pallasiana var. şeneriana. Silvae Genetica: 49(6), 264-277.
APA ÖZGÜN S, Işık G (2021). Ecophysiological responses of Zea mays L. against thermal power plant fly ash applications. , 286 - 291. 10.46309/biodicon.2021.960618
Chicago ÖZGÜN Sertaç,Işık Gülçin Ecophysiological responses of Zea mays L. against thermal power plant fly ash applications. (2021): 286 - 291. 10.46309/biodicon.2021.960618
MLA ÖZGÜN Sertaç,Işık Gülçin Ecophysiological responses of Zea mays L. against thermal power plant fly ash applications. , 2021, ss.286 - 291. 10.46309/biodicon.2021.960618
AMA ÖZGÜN S,Işık G Ecophysiological responses of Zea mays L. against thermal power plant fly ash applications. . 2021; 286 - 291. 10.46309/biodicon.2021.960618
Vancouver ÖZGÜN S,Işık G Ecophysiological responses of Zea mays L. against thermal power plant fly ash applications. . 2021; 286 - 291. 10.46309/biodicon.2021.960618
IEEE ÖZGÜN S,Işık G "Ecophysiological responses of Zea mays L. against thermal power plant fly ash applications." , ss.286 - 291, 2021. 10.46309/biodicon.2021.960618
ISNAD ÖZGÜN, Sertaç - Işık, Gülçin. "Ecophysiological responses of Zea mays L. against thermal power plant fly ash applications". (2021), 286-291. https://doi.org/10.46309/biodicon.2021.960618
APA ÖZGÜN S, Işık G (2021). Ecophysiological responses of Zea mays L. against thermal power plant fly ash applications. Biological Diversity and Conservation, 14(2), 286 - 291. 10.46309/biodicon.2021.960618
Chicago ÖZGÜN Sertaç,Işık Gülçin Ecophysiological responses of Zea mays L. against thermal power plant fly ash applications. Biological Diversity and Conservation 14, no.2 (2021): 286 - 291. 10.46309/biodicon.2021.960618
MLA ÖZGÜN Sertaç,Işık Gülçin Ecophysiological responses of Zea mays L. against thermal power plant fly ash applications. Biological Diversity and Conservation, vol.14, no.2, 2021, ss.286 - 291. 10.46309/biodicon.2021.960618
AMA ÖZGÜN S,Işık G Ecophysiological responses of Zea mays L. against thermal power plant fly ash applications. Biological Diversity and Conservation. 2021; 14(2): 286 - 291. 10.46309/biodicon.2021.960618
Vancouver ÖZGÜN S,Işık G Ecophysiological responses of Zea mays L. against thermal power plant fly ash applications. Biological Diversity and Conservation. 2021; 14(2): 286 - 291. 10.46309/biodicon.2021.960618
IEEE ÖZGÜN S,Işık G "Ecophysiological responses of Zea mays L. against thermal power plant fly ash applications." Biological Diversity and Conservation, 14, ss.286 - 291, 2021. 10.46309/biodicon.2021.960618
ISNAD ÖZGÜN, Sertaç - Işık, Gülçin. "Ecophysiological responses of Zea mays L. against thermal power plant fly ash applications". Biological Diversity and Conservation 14/2 (2021), 286-291. https://doi.org/10.46309/biodicon.2021.960618