Yıl: 2021 Cilt: 45 Sayı: 2 Sayfa Aralığı: 127 - 137 Metin Dili: İngilizce DOI: 10.3906/biy-2010-39 İndeks Tarihi: 29-07-2022

Targeting the tumor stroma: integrative analysis reveal GATA2 and TORYAIP1 as novel prognostic targets in breast and ovarian cancer

Öz:
: Tumor stroma interaction is known to take a crucial role in cancer growth and progression. In the present study, it was performed gene expression analysis of stroma samples with ovarian and breast cancer through an integrative analysis framework to identifycommon critical biomolecules at multiomics levels. Gene expression datasets were statistically analyzed to identify common differentially expressed genes (DEGs) by comparing tumor stroma and normal stroma samples. The integrative analyses of DEGs indicatedthat there were 59 common core genes, which might be feasible to be potential marks for cancer stroma targeted strategies. Reportermolecules (i.e. receptor, transcription factors and miRNAs) were determined through a statistical test employing the hypergeometricprobability density function. Afterward, the tumor microenvironment protein-protein interaction and the generic network were reconstructed by using identified reporter molecules and common core DEGs. Through a systems medicine approach, it was determined thathub biomolecules, AR, GATA2, miR-124, TOR1AIP1, ESR1, EGFR, STAT1, miR-192, GATA3, COL1A1, in tumor microenvironmentgeneric network. These molecules were also identified as prognostic signatures in breast and ovarian tumor samples via survival analysis. According to literature searching, GATA2 and TORYAIP1 might represent potential biomarkers and candidate drug targets for thestroma targeted cancer therapy applications
Anahtar Kelime: cancer stroma network medicine Gene expression biomarkers

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • Agostini A, Brunetti M, Davidson B, Tropé CG, Eriksson AGZ et al. (2018). The microRNA miR-192/215 family is upregulated in mucinous ovarian carcinomas. Scientific Reports 8 (1): 1-7. doi: 10.1038/s41598-018-29332-7
  • Aguirre-Gamboa R, Gomez-Rueda H, Martínez-Ledesma E, Martínez-Torteya A, Chacolla-Huaringa R et al. (2013). SurvExpress: an online biomarker validation tool and database for cancer gene expression data using survival analysis. PLoS One 168 (9): e74250. doi: 10.1371/journal.pone.0074250
  • Barrett T, Wilhite SE, Ledoux P, Evangelista C, Kim IF et al. (2013). NCBI GEO: Archive for functional genomics data sets - update. Nucleic Acids Research 41 (D1): 991-995. doi: 10.1093/ nar/gks1193
  • Bhargava R, Gerald WL, Li AR, Pan Q, Lal P et al. (2005). EGFR gene amplification in breast cancer: Correlation with epidermal growth factor receptor mRNA and protein expression and HER2 status and absence of EGFR-activating mutations. Modern Pathology 18 (8): 1027-1033. doi: 10.1038/modpathol.3800438
  • Bhowmick NA, Moses HL (2005). Tumor stroma interactions. Current Opinion in Genetics & Development 15 (1): 1-8. doi: 10.1016/j.gde.2004.12.003
  • Bolstad BM, Irizarry RA, Åstrand M, Speed TP (2003). A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 19 (2): 185-193. doi: 10.1093/bioinformatics/19.2.185
  • Calimlioglu B, Karagoz K, Sevimoglu T, Kilic E, Gov E et al. (2015). Tissue-specific molecular biomarker signatures of type 2 diabetes: an integrative analysis of transcriptomics and proteinprotein interaction data. OMICS: A Journal of Integrative Biology 19 (9): 563-73. doi: 10.1089/omi.2015.0088
  • Casey T, Bond J, Tighe S, Hunter T, Lintault L et al. (2009). Molecular signatures suggest a major role for stromal cells in development of invasive breast cancer. Breast Cancer Research and Treatment 114 (1): 47-62. doi: 10.1007/s10549-008-9982-8
  • Chen HJ, Huang RL, Liew PL, Su PH, Chen LY et al. (2018). GATA3 as a master regulator and therapeutic target in ovarian highgrade serous carcinoma stem cells. International Journal of Cancer 15143 (12): 3106-3119. doi: 10.1002/ijc.31750
  • Comertpay B, Gov E (2020). Identification of key biomolecules in rheumatoid arthritis through the reconstruction of comprehensive disease-specific biological networks. Journal of Autoimmunity 53 (3): 156-166. doi: 10.1080/08916934.2020.1722107
  • Croft D, O’Kelly G, Wu G, Haw R, Gillespie M et al. (2011). Reactome: a database of reactions, pathways and biological processes. Nucleic Acids Research 39 (S1): 691-697. doi: 10.1093/nar/ gkq1018
  • Eeckhoute J, Keeton EK, Lupien M, Krum SA, Carroll JS et al. (2007). Positive cross-regulatory loop ties GATA-3 to estrogen receptor α expression in breast cancer. Cancer Research 67 (13): 6477- 6483. doi: 10.1158/0008-5472
  • Erez N, Glanz S, Raz Y, Avivi C, Barshack I (2013). Cancer associated fibroblasts express pro-inflammatory factors in human breast and ovarian tumors. Biochemical and Biophysical Research Communications 437 (3): 397-402. doi: 10.1016/j. bbrc.2013.06.089
  • Gautier L, Cope L, Bolstad BM, Irizarry RA (2004). affy–analysis of Affymetrix GeneChip data at the probe level. Bioinformatics 20 (3): 307-315. doi: 10.1093/bioinformatics/btg405
  • Giannopoulou L, Mastoraki S, Buderath P, Strati A, Pavlakis K et al. (2018). ESR1 methylation in primary tumors and paired circulating tumor DNA of patients with high-grade serous ovarian cancer. Gynecologic Oncology 150 (2): 355-360. doi: 10.1016/j.ygyno.2018.05.026
  • Giovannelli P, Di Donato M, Galasso G, Di Zazzo E, Bilancio A et al. (2018). The androgen receptor in breast cancer. Frontiers in Endocrinology 9: 492. doi: 10.3389/fendo.2018.00492
  • Gov E (2020). Co-expressed functional module-related genes in ovarian cancer stem cells represent novel prognostic biomarkers in ovarian cancer. Systems Biology in Reproductive Medicine 66 (4): 255-266. doi: 10.1080/19396368.2020.1759730
  • Gov E, Kori M, Arga KY (2017). RNA-based ovarian cancer research from ‘a gene to systems biomedicine’ perspective. Systems Biology in Reproductive Medicine 63 (4): 219-238. doi: 10.1080/19396368.2017.1330368
  • Gov E, Kori M, Arga KY (2017). Multiomics analysis of tumor microenvironment reveals Gata2 and miRNA-124-3p as potential novel biomarkers in ovarian cancer. OMICS: A Journal of Integrative Biology 21 (10): 603-615. doi: 10.1089/ omi.2017.0115
  • Guo S, Deng CX (2018). Effect of stromal cells in tumor microenvironment on metastasis initiation. International Journal of Biological Sciences 1314 (14): 2083-2093. doi: 10.7150/ijbs.25720
  • Henshall SM, Quinn DI, Lee CS, Head DR, Golovsky D et al. (2001). Altered expression of androgen receptor in the malignant epithelium and adjacent stroma is associated with early relapse in prostate cancer. Cancer Research 61 (2): 423-427.
  • Hu F, Meng X, Tong Q, Liang L, Xiang R et al. (2013). BMP-6 inhibits cell proliferation by targeting microRNA-192 in breast cancer. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease 1832 (12): 2379-2390. doi: 10.1016/j. bbadis.2013.08.011
  • Islam T, Rahman R, Gov E, Turanli B, Gulfidan G et al. (2018). Drug targeting and biomarkers in head and neck cancers: Insights from systems biology analyses. OMICS: A Journal of Integrative Biology 22 (6): 422-436. doi: 10.1089/omi.2018.0048
  • Josahkian JA, Saggioro FP, Vidotto T, Ventura HT, Reis FJCD et al. (2018). Increased STAT1 expression in high grade serous ovarian cancer is associated with a better outcome. International Journal of Gynecological Cancer 28 (3): 459-465. doi: 10.1097/IGC.0000000000001193
  • Kamburov A, Stelzl U, Lehrach H, Herwig R (2013). The ConsensusPathDB interaction database: 2013 update. Nucleic Acids Research 41 (D1): 793-800. doi: 10.1093/nar/gks1055
  • Kanehisa M, Goto S, Sato Y, Furumichi M, Tanabe M (2012). KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Research 40 (D1): 109-114. doi: 10.1093/ nar/gkr988
  • Karagoz K, Sevimoglu T, Arga KY (2016). Integration of multiple biological features yields high confidence human protein interactome. Journal of Theoretical Biology 403: 85-96. doi: 10.1016/j.jtbi.2016.05.020
  • Karn T, Pusztai L, Rody A, Holtrich U, Becker S (2015). The influence of host factors on the prognosis of breast cancer: stroma and immune cell components as cancer biomarkers. Current Cancer Drug Targets 15 (8): 652-664.
  • Karnoub AE, Dash AE, Vo AP, Sullivan A, Brooks MW et al. (2007). Mesenchymal stem cells within tumor stroma promote breast cancer metastasis. Nature 449 (7162): 557-563. doi: 10.1038/ nature06188
  • King, MC, Marks JH, Mandell JB. (2003). Breast and ovarian cancer risks due to inherited mutations in BRCA1 and BRCA2. Science 302 (5645): 643-646. doi: 10.1126/science.1088759
  • Kori M, Gov E, Arga KY (2016). Molecular signatures of ovarian diseases: Insights from network medicine perspective. Systems Biology Reproductive Medicine 62 (4): 266-282. doi: 10.1080/19396368.2016.1197982
  • Koromilas AE, Sexl V (2013). The tumor suppressor function of STAT1 in breast cancer. JAK-STAT 2 (2): e23353. doi: 10.4161/ jkst.23353
  • Li M, Wang J, Wang C, Xia L, Xu J et al. (2020). Microenvironment remodeled by tumor and stromal cells elevates fibroblastderived COL1A1 and facilitates ovarian cancer metastasis. Experimental Cell Research 394 (1): 112153. doi: 10.1016/j. yexcr.2020.112153
  • Lili LN, Matyunina LV, Walker LD, Benigno BB, McDonald JF (2013). Molecular profiling predicts the existence of two functionally distinct classes of ovarian cancer stroma. Biomed Research International 2013. doi: 10.1155/2013/846387
  • Mao Y, Keller ET, Garfield DH, Shen K, Wang J (2013). Stromal cells in tumor microenvironment and breast cancer. Cancer and Metastasis Review 32: 303-315. doi: /10.1007/s10555-012- 9415-3
  • Nagy Á, Lánczky A, Menyhárt O, Gyorffy B (2018). Validation of miRNA prognostic power in hepatocellular carcinoma using expression data of independent datasets. Scientific Reports 8 (1): 1-9. doi: 10.1038/s41598-018-27521-y
  • Planche A, Bacac M, Provero P, Fusco C, Delorenzi M et al. (2011). Identification of prognostic molecular features in the reactive stroma of human breast and prostate cancer. PLoS One 6 (5): e18640. doi: 10.1371/journal.pone.0018640.
  • Rahman MR, Islam T, Zaman T, Shahjaman M, Karim MR et al. (2020). Identification of molecular signatures and pathways to identify novel therapeutic targets in Alzheimer’s disease: Insights from a systems biomedicine perspective. Genomics 112 (2): 1290-1299. doi: 10.1016/j.ygeno.2019.07.018
  • Safran M, Dalah I, Alexander J, Naomi R, Tsippi IS et al. (2010). GeneCards Version 3: the human gene integrator. Database. doi: 10.1093/database/baq020
  • Schauer JG, Sood AK, Mok S, Liu J (2011). Cancer-associated fibroblasts and their putative role in potentiating the initiation and development of epithelial ovarian cancer. Neoplasia 13 (5): 393-405. doi: 10.1593/neo.101720
  • Sevimoglu T, Arga KY (2014). The role of protein interaction networks in systems biomedicine. Computational and Structural Biotechnology Journal 11 (18): 22-27. doi: 10.1016/j. csbj.2014.08.008
  • Shi XB, Xue L, Ma AH, Tepper CG, Edwards RG et al. (2013). Tumor suppressive miR-124 targets androgen receptor and inhibits proliferation of prostate cancer cells. Oncogene 32 (35): 4130- 4138. doi: 10.1038/onc.2012.425
  • Smoot ME, Ono K, Ruscheinski J, Wang PL, Ideker T (2011). Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics 27(3): 431-432. doi: 10.1093/ bioinformatics/btq675
  • Smyth GK, Ritchie M, Thorne N (2003). Linear models for microarray data user’s guide. Bioinformatics 20: 3705-3706.
  • Tong CWS, Wu M, Cho WCS, To KKW (2018). Recent advances in the treatment of breast cancer. Frontiers Oncology 8: 227. doi: 10.3389/fonc.2018.00227
  • Uddin MN, Li M, Wang X, Weygant N (2019). Identification of transcriptional signatures of colon tumor stroma by a metaanalysis. Journal of Oncology 2019. doi: 10.1155/2019/8752862
  • Valkenburg KC, De Groot AE, Pienta KJ (2018). Targeting the tumor stroma to improve cancer therapy. Nature Reviews Clinical Oncology 15 (6): 366-381. doi: 10.1038/s41571-018-0007-1
  • Wang Y, Chen L, Wu Z, Wang M, Jin F et al. (2016). miR-124-3p functions as a tumor suppressor in breast cancer by targeting CBL. BMC Cancer 16 (1): 826. doi: 10.1186/s12885-016-2862- 4
  • Yeung TL, Leung CS, Wong KK, Samimi G, Thompson MS et al. (2013). TGF-β modulates ovarian cancer invasion by upregulating CAF-derived versican in the tumor microenvironment. Cancer Research 73 (16): 5016-5028. doi: 10.1158/0008-5472.CAN13-0023
  • Yoshihara K, Shahmoradgoli M, Martínez E, Vegesna R, Kim H et al. (2013). Inferring tumour purity and stromal and immune cell admixture from expression data. Nature Communications 4 (1): 1-11. doi: 10.1038/ncomms3612
  • Zellmer VR, Schnepp PM, Fracci SL, Tan X, Howe EN et al. (2017). Tumor-induced stromal STAT1 accelerates breast cancer via deregulating tissue homeostasis. Molecular Cancer Research 15 (5): 585-597. doi: 10.1158/1541-7786.MCR-16-0312
  • Zhao Y, Ling Z, Hao Y, Pang X, Han X et al. (2017). MiR-124 acts as a tumor suppressor by inhibiting the expression of sphingosine kinase 1 and its downstream signaling in head and neck squamous cell carcinoma. Oncotarget 8 (15): 25005-25020. doi: 10.18632/oncotarget.15334
APA ERCEYLAN Ö, Savaş A, GOV E (2021). Targeting the tumor stroma: integrative analysis reveal GATA2 and TORYAIP1 as novel prognostic targets in breast and ovarian cancer. , 127 - 137. 10.3906/biy-2010-39
Chicago ERCEYLAN ÖMER FARUK,Savaş Ayşe,GOV ESRA Targeting the tumor stroma: integrative analysis reveal GATA2 and TORYAIP1 as novel prognostic targets in breast and ovarian cancer. (2021): 127 - 137. 10.3906/biy-2010-39
MLA ERCEYLAN ÖMER FARUK,Savaş Ayşe,GOV ESRA Targeting the tumor stroma: integrative analysis reveal GATA2 and TORYAIP1 as novel prognostic targets in breast and ovarian cancer. , 2021, ss.127 - 137. 10.3906/biy-2010-39
AMA ERCEYLAN Ö,Savaş A,GOV E Targeting the tumor stroma: integrative analysis reveal GATA2 and TORYAIP1 as novel prognostic targets in breast and ovarian cancer. . 2021; 127 - 137. 10.3906/biy-2010-39
Vancouver ERCEYLAN Ö,Savaş A,GOV E Targeting the tumor stroma: integrative analysis reveal GATA2 and TORYAIP1 as novel prognostic targets in breast and ovarian cancer. . 2021; 127 - 137. 10.3906/biy-2010-39
IEEE ERCEYLAN Ö,Savaş A,GOV E "Targeting the tumor stroma: integrative analysis reveal GATA2 and TORYAIP1 as novel prognostic targets in breast and ovarian cancer." , ss.127 - 137, 2021. 10.3906/biy-2010-39
ISNAD ERCEYLAN, ÖMER FARUK vd. "Targeting the tumor stroma: integrative analysis reveal GATA2 and TORYAIP1 as novel prognostic targets in breast and ovarian cancer". (2021), 127-137. https://doi.org/10.3906/biy-2010-39
APA ERCEYLAN Ö, Savaş A, GOV E (2021). Targeting the tumor stroma: integrative analysis reveal GATA2 and TORYAIP1 as novel prognostic targets in breast and ovarian cancer. Turkish Journal of Biology, 45(2), 127 - 137. 10.3906/biy-2010-39
Chicago ERCEYLAN ÖMER FARUK,Savaş Ayşe,GOV ESRA Targeting the tumor stroma: integrative analysis reveal GATA2 and TORYAIP1 as novel prognostic targets in breast and ovarian cancer. Turkish Journal of Biology 45, no.2 (2021): 127 - 137. 10.3906/biy-2010-39
MLA ERCEYLAN ÖMER FARUK,Savaş Ayşe,GOV ESRA Targeting the tumor stroma: integrative analysis reveal GATA2 and TORYAIP1 as novel prognostic targets in breast and ovarian cancer. Turkish Journal of Biology, vol.45, no.2, 2021, ss.127 - 137. 10.3906/biy-2010-39
AMA ERCEYLAN Ö,Savaş A,GOV E Targeting the tumor stroma: integrative analysis reveal GATA2 and TORYAIP1 as novel prognostic targets in breast and ovarian cancer. Turkish Journal of Biology. 2021; 45(2): 127 - 137. 10.3906/biy-2010-39
Vancouver ERCEYLAN Ö,Savaş A,GOV E Targeting the tumor stroma: integrative analysis reveal GATA2 and TORYAIP1 as novel prognostic targets in breast and ovarian cancer. Turkish Journal of Biology. 2021; 45(2): 127 - 137. 10.3906/biy-2010-39
IEEE ERCEYLAN Ö,Savaş A,GOV E "Targeting the tumor stroma: integrative analysis reveal GATA2 and TORYAIP1 as novel prognostic targets in breast and ovarian cancer." Turkish Journal of Biology, 45, ss.127 - 137, 2021. 10.3906/biy-2010-39
ISNAD ERCEYLAN, ÖMER FARUK vd. "Targeting the tumor stroma: integrative analysis reveal GATA2 and TORYAIP1 as novel prognostic targets in breast and ovarian cancer". Turkish Journal of Biology 45/2 (2021), 127-137. https://doi.org/10.3906/biy-2010-39