Yıl: 2021 Cilt: 45 Sayı: 2 Sayfa Aralığı: 111 - 123 Metin Dili: İngilizce DOI: 10.3906/bot-2011-2 İndeks Tarihi: 29-07-2022

miRNAs involved in drought stress in Italian ryegrass (Lolium multiflorum L.)

Öz:
miRNAs have been characterized as a regulator of main processes in plants by silencing genes. The functions of microRNAshave been studied in various crops, hovewer, no studies have been observed about miRNAs in Italian rygrass (Lolium multiflorum L.)against drought stress. This experiment aimed to reveal the involvement of miRNAs against drought stress in sensitive and tolerant Italianryegrass genotypes. Four genotypes (G1 and G2 as drought sensitive – G3 and G4 as drought tolerant) were selected. The sensitivities ofthese genotypes against drought stress were verified by performing growth parameters, relative water and proline contents under normaland drought conditions. The results show that the relative expression of the miRNAs revealed both similarities and differences betweensensitive and tolerant Italian ryegrass genotypes. Under drought conditions, significant upregulations (miRNA156i, miRNA845a)and downregulations (miRNA2937, miRNA3980b) were observed in drought tolerant genotypes. Similarly, significant upregulation(miRNA845a) and downregulation (miRNA5636) were observed in drought sensitive genotypes under drought conditions. The resultsindicate that miRNA3980b, miRNA156i, and miRNA2937 are responsible for drought stress tolerance in tolerant Italian ryegrass. ThesemiRNAs could be used to develop Italian ryegrass plants that tolerate drought stress conditions.
Anahtar Kelime: transcription regulation Abiotic stress forage crop

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • Akdogan G, Tufekci ED, Uranbey S, Unver T (2016). miRNA-based drought regulation in wheat. Functional and Integrative Genomics 16 (3): 221-233. doi: 10.1007/s10142-015-0452-1
  • Bakhshi B, Fard EM, Nikpay N, Ebrahimi MA, Bihamta MR et al. (2016). MicroRNA signatures of drought signaling in rice root. PLoS One 11 (6): 1-25. doi: 10.1371/journal.pone.0156814.
  • Bakhshi B, Fard EM, Gharechahi J, Safarzadeh M, Nikpay N et al. (2017). The contrasting microRNA content of a drought tolerant and a drought susceptible wheat cultivar. Journal of Plant Physiology 216: 35-43. doi: 10.1016/j.jplph.2017.05.012
  • Balyan S, Kumar M, Mutum RD, Raghuvanshi U, Agarwal P et al. (2017). Identification of miRNA-mediated drought responsive multi-tiered regulatory network in drought tolerant rice, Nagina 22. Scientific Reports 7 (1): 1-17. doi: 10.1038/s41598- 017-15450-1
  • Barrera-Figueroa BE, Gao L, Diop NN, Wu Z, Ehlers JD et al. (2011). Identification and comparative analysis of drought-associated microRNAs in two cowpea genotypes. BMC Plant Biology 11 (1): 127. doi: 10.1186/1471-2229-11-127
  • Basu S, Ramegowda V, Kumar A, Pereira A (2016). Plant adaptation to drought stress. F1000Research 5: 1554-1562. doi: 10.12688/ f1000research.7678.1
  • Bates LS, Waldren RP, Teare I (1973). Rapid determination of free proline for water-stress studies. Plant and Soil 39 (1): 205-207. doi: 10.1007/BF00018060
  • Benedetti L, Rangani G, Ebeling Viana V, Carvalho-Moore P, Rabaioli Camargo E et al. (2020). Recurrent selection by herbicide sublethal dose and drought stress results in rapid reduction of herbicide sensitivity in junglerice. Agronomy 10 (11): 1-9. doi: 10.3390/agronomy10111619
  • Boopathi NM (2015). Plant miRNomics: novel insights in gene expression and regulation. In: Barh D, Khan M, Davies E (editors). PlantOmics: The Omics of Plant Science. New Delhi, India: Springer, pp. 181-211. doi: 10.1007/978-81-322-2172- 2_7
  • Bothe A, Westermeier P, Wosnitza A, Willner E, Schum A et al. (2018). Drought tolerance in perennial ryegrass (Lolium perenne L.) as assessed by two contrasting phenotyping systems. Journal of Agronomy and Crop Science 204 (4): 375-389. doi: 10.1111/ jac.12269
  • Boualem A, Laporte P, Jovanovic M, Laffont C, Plet J et al. (2008). MicroRNA166 controls root and nodule development in Medicago truncatula. The Plant Journal 54 (5): 876-887. doi: 10.1111/j.1365-313X.2008.03448.x
  • Chen X (2009). Small RNAs and their roles in plant development. Annual Review of Cell and Developmental Biology 25: 21-44. doi: 10.1146/annurev.cellbio.042308.113417
  • Chen Q, Li M, Zhang Z, Tie W, Chen X et al. (2017). Integrated mRNA and microRNA analysis identifies genes and small miRNA molecules associated with transcriptional and posttranscriptional-level responses to both drought stress and rewatering treatment in tobacco. BMC Genomics 18 (1): 1-16. doi: 10.1186/s12864-016-3372-0
  • Covarrubias AA, Reyes JL (2010). Post‐transcriptional gene regulation of salinity and drought responses by plant microRNAs. Plant, Cell & Environment 33 (4): 481-489. doi: 10.1111/j.1365-3040.2009.02048.x
  • Cyriac D, Hofmann RW, Stewart A, Sathish P, Winefield CS et al. (2018). Intraspecific differences in long-term drought tolerance in perennial ryegrass. PLoS One 13 (4). doi: 10.1371/journal. pone.0194977
  • Demirkol G (2020). The role of BADH gene in oxidative, salt, and drought stress tolerances of white clover. Turkish Journal of Botany 44 (3): 214-221. doi: 10.3906/bot-2002-28
  • Ding Y, Yueliang T, Cheng Z (2013). Emerging roles of microRNAs in the mediation of drought stress response in plants. Journal of Experimental Botany 64 (11): 3077-3086. doi: 10.1093/jxb/ ert164
  • Ebrahimiyan M, Majidi M, Mirlohi A (2013). Genotypic variation and selection of traits related to forage yield in tall fescue under irrigated and drought stress environments. Grass and Forage Science 68 (1): 59-71. doi: 10.1111/j.1365-2494.2012.00869.x
  • El Sanousi RS, Hamza NB, Abdelmula AA, Mohammed IA, Gasim SM et al. (2016). Differential expression of miRNAs in Sorghum bicolor under drought and salt stress. American Journal of Plant Sciences 7 (6): 870-878. doi: 10.4236/ajps.2016.76082
  • Farrant JM (2000). A comparison of mechanisms of desiccation tolerance among three angiosperm resurrection plant species. Plant Ecology 151 (1): 29-39. doi: 10.1023/A:1026534305831
  • González-Villagra J, Kurepin LV, Reyes-Díaz MM (2017). Evaluating the involvement and interaction of abscisic acid and miRNA156 in the induction of anthocyanin biosynthesis in drought-stressed plants. Planta 246 (2): 299-312. doi: 10.1007/ s00425-017-2711-y
  • Hackenberg M, Gustafson P, Langridge P, Shi BJ (2015). Differential expression of microRNAs and other small RNAs in barley between water and drought conditions. Plant Biotechnology Journal 13 (1): 2-13. doi: 10.1111/pbi.12220
  • Hamza NB, Sharma N, Tripathi A, Sanan-Mishra N (2016). MicroRNA expression profiles in response to drought stress in Sorghum bicolor. Gene Expression Patterns 20 (2): 88-98. doi: 10.1016/j.gep.2016.01.001
  • Huang B, Gao H (2000). Root physiological characteristics associated with drought resistance in tall fescue cultivars. Crop Science 40 (1): 196-203. doi: 10.2135/cropsci2000.401196x
  • Huang Y, Zou Q, Sun XH, Zhao LP (2014). Computational identification of microRNAs and their targets in perennial ryegrass (Lolium perenne). Applied Biochemistry and Biotechnology 173 (4): 1011-1022. doi: 10.1007/s12010-014- 0891-5
  • Jordan WR, Dugas WA, Shouse PJ (1983). Strategies for crop improvement drought-prone region (Sorghum bicolor, Triticum aestivum, wheat plant breeding). In: Stone JF, Willis WO (editors). Agricultural Water Management. Amsterdam, Netherlands: Elsevier, pp. 281-299. doi: 10.1016/B978-0-444- 42214-9.50026-0
  • Kadioglu A, Terzi R, Saruhan N, Saglam A (2012). Current advances in the investigation of leaf rolling caused by biotic and abiotic stress factors. Plant Science 182: 42-48. doi: 10.1016/j. plantsci.2011.01.013
  • Kantar M, Lucas SJ, Budak H (2011). miRNA expression patterns of Triticum dicoccoides in response to shock drought stress. Planta 233 (3): 471-484. doi: 10.1007/s00425-010-1309-4
  • Kantar M, Unver T, Budak H, 2010. Regulation of barley miRNAs upon dehydration stress correlated with target gene expression. Functional & Integrative Genomics 10 (4): 493-507. doi: 10.1007/s10142-010-0181-4
  • Kashiwagi J, Krishnamurthy L, Crouch JH, Serraj R (2006). Variability of root length density and its contributions to seed yield in chickpea (Cicer arietinum L.) under terminal drought stress. Field Crops Research 95 (2-3): 171-181. doi: 10.1016/j. fcr.2005.02.012
  • Kemesyte V, Statkeviciute G, Brazauskas G (2017). Perennial ryegrass yield performance under abiotic stress. Crop Science 57 (4): 1935-1940. doi: 10.2135/cropsci2016.10.0864
  • Khandal H, Parween S, Roy R, Meena MK, Chattopadhyay D (2017). MicroRNA profiling provides insights into post-transcriptional regulation of gene expression in chickpea root apex under salinity and water deficiency. Scientific Reports 7 (1): 1-14. doi: 10.1038/s41598-017-04906-z
  • Li RH, Guo PG, Michael B, Stefania G, Salvatore C (2006). Evaluation of chlorophyll content and fluorescence parameters as indicators of drought tolerance in barley. Agricultural Sciences in China 5 (10): 751-757. doi: 10.1016/S1671-2927(06)60120-X
  • Liu D, Song Y, Chen Z, Yu D (2009). Ectopic expression of miR396 suppresses GRF target gene expression and alters leaf growth in Arabidopsis. Physiologia Plantarum 136 (2): 223-236. doi: 10.1111/j.1399-3054.2009.01229.x
  • Liu H, Searle IR, Watson-Haigh NS, Baumann U, Mather DE et al. (2015). Genome-wide identification of microRNAs in leaves and the developing head of four durum genotypes during water deficit stress. PLoS One 10: 1-30. doi: 10.1371/journal. pone.0142799
  • Liu H, Tian X, Li Y, Wu CA, Zheng C (2008). Microarray-based analysis of stress-regulated microRNAs in Arabidopsis thaliana. RNA 14 (5): 836-843. doi: 10.1261/rna.895308
  • Liu Q, Yang T, Yu T, Zhang S, Mao X et al. (2017). Integrating small RNA sequencing with QTL mapping for identification of miRNAs and their target genes associated with heat tolerance at the flowering stage in rice. Frontiers in Plant Science, 8: 1-15. doi: 10.3389/fpls.2017.00043
  • Liu WW, Meng J, Cui J, Luan YS (2017). Characterization and function of microRNAs in plants. Frontiers in Plant Science 8: 1-7. doi: 10.3389/fpls.2017.02200
  • Ma J, Wang Y, Li J (2019). Global identification and analysis of microRNAs involved in salt stress responses in two alfalfa (Medicago sativa ‘Millennium’) lines. Canadian Journal of Plant Science. doi: 10.1139/CJPS-2018-0327
  • Mahto BK, Katiyar A, Lenka SK, Bansal KC, 2020. Small RNA technology for plant abiotic stress tolerance. In: Guleria P, Vineet Kumar V (editors). Plant Small RNA. Amsterdam, Netherlands: Elsevier, pp. 521-541. doi: 10.1016/B978-0-12- 817112-7.00023-7
  • Makbul S, Saruhan Güler N, Durmuş N, Güven S (2011). Changes in anatomical and physiological parameters of soybean under drought stress. Turkish Journal of Botany 35 (4): 369-377. doi: 10.3906/bot-1002-7
  • Muhammad S, Ismanizan I (2018). Micro RNAs and sesquiterpene biosynthesis in Arabidopsis thaliana. Plant Productivity and Environmental Conservation 1: 221-225.
  • Murashige T, Skoog F (1962). A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia Plantarum 15: 473-497. doi: 10.1111/j.1399-3054.1962.tb08052.x
  • Nageshbabu R, Jyothi M, Sharadamma N (2013). Expression of miRNAs regulates growth and development of French bean (Phaseolus vulgaris) under salt and drought stress conditions. ISCA Journal of Biological Sciences 2 (1): 52-56.
  • Nguyen G, Rothstein S, Spangenberg G, Kant S (2015). Role of microRNAs involved in plant response to nitrogen and phosphorous limiting conditions. Frontiers in Plant Science 6: 1-15. doi: 10.3389/fpls.2015.00629
  • Noman A, Aqeel M (2017). miRNA-based heavy metal homeostasis and plant growth. Environmental Science and Pollution Research 24 (11): 10068-10082. doi: 10.1007/s11356-017- 8593-5
  • Ozelcam H, Kirkpinar F, Tan K (2015). Chemical composition, in vivo digestibility and metabolizable energy values of caramba (Lolium multiflorum cv. caramba) fresh, silage and hay. AsianAustralasian Journal of Animal Sciences 28 (10): 1427-1432. doi: 10.5713/ajas.15.0074
  • Pan L, Zhang X, Wang J, Ma X, Zhou M et al. (2016). Transcriptional profiles of drought-related genes in modulating metabolic processes and antioxidant defenses in Lolium multiflorum. Frontiers in Plant Science 7: 1-15. doi: 10.3389/fpls.2016.00519
  • Pokoo R, Ren S, Wang Q, Motes CM, Hernandez TD et al. (2018). Genotype-and tissue-specific miRNA profiles and their targets in three alfalfa (Medicago sativa L) genotypes. BMC Genomics 19 (10): 913. doi: 10.1186/s12864-018-5280-y
  • Rajasheker G, Jawahar G, Jalaja N, Kumar SA, Kumari PH et al. (2019). Role and regulation of osmolytes and ABA interaction in salt and drought stress tolerance. In: Khan MIR, Reddy PS, Ferrante A, Khan NA (editors). Plant Signaling Molecules. New Delhi, India: Woodhead Publishing. doi: 10.1016/B978- 0-12-816451-8.00026-5
  • Ranganayakulu GS, Chinta S, Reddy PS (2015). Effect of water stress on proline metabolism and leaf relative water content in two high yielding genotypes of groundnut (Arachis hypogaea L.) with contrasting drought tolerance. Journal of Experimental Biology and Agricultural Sciences 3 (1): 97-103.
  • Rosales MA, Cuellar‐Ortiz SM, Arrieta‐Montiel DLP, Acosta‐ Gallegos J, Covarrubias A (2013). Physiological traits related to terminal drought resistance in common bean (Phaseolus vulgaris L.). Journal of the Science of Food and Agriculture 93 (2): 324-331. doi: 10.1002/jsfa.5761
  • Ryu D, Koh E (2018). Application of response surface methodology to acidified water extraction of black soybeans for improving anthocyanin content, total phenols content and antioxidant activity. Food Chemistry 261: 260-266. doi: 10.1016/j. foodchem.2018.04.061
  • Sunkar R (2010). MicroRNAs with macro-effects on plant stress responses. Seminars in Cell & Developmental Biology 21 (8): 805- 811. doi: 10.1016/j.semcdb.2010.04.001
  • Sunkar R, Zhu JK (2004). Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. The Plant Cell 16 (8): 2001- 2019. doi: 10.1105/tpc.104.022830
  • Tohidi B, Rahimmalek M, Arzani A (2017). Essential oil composition, total phenolic, flavonoid contents, and antioxidant activity of Thymus species collected from different regions of Iran. Food Chemistry 220: 153-161. doi: 10.1016/j.foodchem.2016.09.203
  • Turner NC (2019). Imposing and maintaining soil water deficits in drought studies in pots. Plant and Soil 439 (1): 45-55. doi: 10.1007/ s11104-018-3893-1
  • Vakilian KA (2020). Machine learning improves our knowledge about miRNA functions towards plant abiotic stresses. Scientific Reports 10 (1): 1-10. doi: 10.1038/s41598-020-59981-6
  • Wang T, Chen L, Zhao M, Tian Q, Zhang W (2011). Identification of drought-responsive microRNAs in Medicago truncatula by genomewide highthroughput sequencing. BMC Genomics 12 (1): 367. doi: 10.1186/1471-2164-12-367
  • Wang W, Liu G, Niu H, Timko MP, Zhang H (2014). The F-box protein COI1 functions upstream of MYB305 to regulate primary carbohydrate metabolism in tobacco (Nicotiana tabacum L. cv. TN90). Journal of Experimental Botany 65 (8): 2147-2160. doi: 10.1093/jxb/eru084
  • Wei L, Zhang D, Xiang F, Zhang Z (2009). Differentially expressed miRNAs potentially involved in the regulation of defense mechanism to drought stress in maize seedlings. International Journal of Plant Sciences 170 (8): 979-989. doi: 10.1086/605122
  • Whapham CA, Blunden G, Jenkins T, Hankins SD (1993). Significance of betaines in the increased chlorophyll content of plants treated with seaweed extract. Journal of Applied Phycology 5 (2): 231-234. doi: 10.1007/BF00004023
  • Yang F, Yu D. (2009). Overexpression of Arabidopsis miR396 enhances drought tolerance in transgenic tobacco plants. Acta Botanica Yunnanica 31 (5): 421-426. doi: 10.3724/SP.J.1143.2009.09044
  • Zegaoui Z, Planchais S, Cabassa C, Djebbar R, Belbachir OA et al. (2017). Variation in relative water content, proline accumulation and stress gene expression in two cowpea landraces under drought. Journal of Plant Physiology 218: 26-34. doi: 10.1016/j.jplph.2017.07.009
  • Zeng X, Xu Y, Jiang J, Zhang F, Ma L et al. (2018). Identification of cold stress responsive microRNAs in two winter turnip rape (Brassica rapa L.) by high throughput sequencing. BMC Plant Biology 18 (1): 1-13. doi: 10.1371/journal.pone.0087251.g005
  • Zhang JW, Long Y, Xue MD, Xiao XG, Pei XW (2017). Identification of microRNAs in response to drought in common wild rice (Oryza rufipogon Griff.) shoots and roots. PLoS One 12 (1). doi: 10.1371/journal.pone.0170330
  • Zhang Y, Zhang B, Yang T, Zhang J, Liu B et al. (2020). The GAMYBlike gene SlMYB33 mediates flowering and pollen development in tomato. Horticulture Research 7 (1): 1-16. doi: 10.1038/ s41438-020-00366-1
  • Zhou L, Liu Y, Liu Z, Kong D, Duan M et al. 2010. Genome-wide identification and analysis of drought-responsive microRNAs in Oryza sativa. Journal of Experimental Botany 61 (15): 4157- 4168. doi: 10.1093/jxb/erq237
  • Zhao B, Liang R, Ge L, Li W, Xiao H et al. (2007). Identification of drought-induced microRNAs in rice. Biochemical and Biophysical Research Communications 354 (2): 585-590. doi: 10.1016/j.bbrc.2007.01.022
APA Demirkol G (2021). miRNAs involved in drought stress in Italian ryegrass (Lolium multiflorum L.). , 111 - 123. 10.3906/bot-2011-2
Chicago Demirkol Gurkan miRNAs involved in drought stress in Italian ryegrass (Lolium multiflorum L.). (2021): 111 - 123. 10.3906/bot-2011-2
MLA Demirkol Gurkan miRNAs involved in drought stress in Italian ryegrass (Lolium multiflorum L.). , 2021, ss.111 - 123. 10.3906/bot-2011-2
AMA Demirkol G miRNAs involved in drought stress in Italian ryegrass (Lolium multiflorum L.). . 2021; 111 - 123. 10.3906/bot-2011-2
Vancouver Demirkol G miRNAs involved in drought stress in Italian ryegrass (Lolium multiflorum L.). . 2021; 111 - 123. 10.3906/bot-2011-2
IEEE Demirkol G "miRNAs involved in drought stress in Italian ryegrass (Lolium multiflorum L.)." , ss.111 - 123, 2021. 10.3906/bot-2011-2
ISNAD Demirkol, Gurkan. "miRNAs involved in drought stress in Italian ryegrass (Lolium multiflorum L.)". (2021), 111-123. https://doi.org/10.3906/bot-2011-2
APA Demirkol G (2021). miRNAs involved in drought stress in Italian ryegrass (Lolium multiflorum L.). Turkish Journal of Botany, 45(2), 111 - 123. 10.3906/bot-2011-2
Chicago Demirkol Gurkan miRNAs involved in drought stress in Italian ryegrass (Lolium multiflorum L.). Turkish Journal of Botany 45, no.2 (2021): 111 - 123. 10.3906/bot-2011-2
MLA Demirkol Gurkan miRNAs involved in drought stress in Italian ryegrass (Lolium multiflorum L.). Turkish Journal of Botany, vol.45, no.2, 2021, ss.111 - 123. 10.3906/bot-2011-2
AMA Demirkol G miRNAs involved in drought stress in Italian ryegrass (Lolium multiflorum L.). Turkish Journal of Botany. 2021; 45(2): 111 - 123. 10.3906/bot-2011-2
Vancouver Demirkol G miRNAs involved in drought stress in Italian ryegrass (Lolium multiflorum L.). Turkish Journal of Botany. 2021; 45(2): 111 - 123. 10.3906/bot-2011-2
IEEE Demirkol G "miRNAs involved in drought stress in Italian ryegrass (Lolium multiflorum L.)." Turkish Journal of Botany, 45, ss.111 - 123, 2021. 10.3906/bot-2011-2
ISNAD Demirkol, Gurkan. "miRNAs involved in drought stress in Italian ryegrass (Lolium multiflorum L.)". Turkish Journal of Botany 45/2 (2021), 111-123. https://doi.org/10.3906/bot-2011-2