Yıl: 2021 Cilt: 8 Sayı: 2 Sayfa Aralığı: 250 - 261 Metin Dili: Türkçe DOI: 10.30910/turkjans.876603 İndeks Tarihi: 28-09-2021

Ratlarda Kurşun Asetat Kaynaklı Karaciğer Hasarı Üzerine Chrysin’ in Etkilerinin Araştırılması

Öz:
Bu çalışma ratlarda kurşun asetat (PbA) kaynaklı karaciğer hasarı üzerine chrysin’in (CH)etkilerinin araştırılması amacıyla yapıldı. Çalışmada 35 adet Sprague Dawley cinsi erkek rat, her grupta 7rat olacak şekilde 5 gruba ayrıldı. 1. Grup (Kontrol): Oral yolla serum fizyolojik verildi. 2. Grup (CH grubu):CH (50 mg kg-1 ağırlık gün-1) 7 gün boyunca oral olarak ratlara verildi. 3. Grup (PbA grubu): PbA (30 mgkg-1) 7 gün boyunca 30 mg kg-1 PbA oral yolla ratlara verildi. 4. Grup (PbA+CH 25 grubu): 7 gün boyunca25 mg/kg CH uygulamasından 30 dakika sonra 30 mg kg-1 PbA ratlara oral yoldan verildi. 5. Grup (PbA+CH 50 grubu): 7 gün süreyle 50 mg/kg CH uygulamasından 30 dakika sonra 30 mg kg-1 PbA ratlara oralyoldan verildi. Son uygulamadan 24 saat sonra (8.günde) ratlar hafif sevofloran anestezisi altındaötenazileri yapılarak, doku ve kan örnekleri alındı. Serumda AST, ALT ve ALP ile karaciğer dokusundaMDA, GSH ve NO düzeyleri ile SOD, KAT, GPx ve arginaz enzim aktivitelerine bakıldı. Kontrol ilekıyaslandığı zaman serum ALT, AST ve ALP düzeyleri PbA verilen grupta arttı, bu artış CH ile önemliölçüde düzeltildi. Karaciğer MDA ve NO düzeyleri PbA verilen gruplarda artarken, antioksidan enzimaktiviteleri (SOD, KAT ve GPx) ile GSH düzeyi azaldı. CH uygulaması artan MDA ve NO düzeyleriniazaltırken, antioksidan enzim aktiviteleri ile GSH düzeylerini anlamlı olarak artırdı. Histolojik olarak, PbAuygulanan ratların karaciğerlerinde görülen nekroz, hidropik dejenerasyonlar ve mononükleer hücreinfiltrasyonlarını CH’ın azalttığı belirlendi. Sonuç olarak PbA kaynaklı karaciğer hasarlarını azaltmada CHetkili olmuştur.
Anahtar Kelime:

Investigation of Chrysin Effects on Lead Asetat-Induced Liver Damage in Rats

Öz:
This study was conducted to investigate the effects of chrysin (CH) on lead acetate (PbA) inducing liver injury. In this study, 35 male Sprague Dawley rats were divided into 5 groups as 7 rats in each group. Group 1 (Control): Saline was given orally. Group 2 (CH group): CH (50 mg kg-1 weight day-1 ) were orally given rats for 7 days. Group 3 (PbA group): PbA (30 mg kg-1 ) was orally given to rats at 30 mg kg-1 PbA for 7 days. Group 4 (PbA +CH 25 group): 25 mg/kg CH was orally given to rats for 7 days. In addition, 30 mg kg-1 PbA was given orally to rats for 7 days after 30 minutes of the application of the CH. Group 5 (PbA+CH 50 group): 50 mg kg-1 CH was orally given to rats for 7 days. Furthermore, 30 mg kg-1 PbA was given orally to rats for 7 days after 30 minutes of the application of the CH. The rats were euthanized under mild sevoflurane anesthesia and tissue and blood samples were taken 24 hours after the last application (8th day). AST, ALT and ALP in serum, MDA, GSH and NO levels and SOD, CAT, GPx and arginase enzyme activities in liver tissue were measured. Serum ALT, AST and ALP levels increased in the PbA group when compared with the control, and this increase was partially corrected with CH. Liver MDA and NO levels increased in the PbA administered groups while antioxidant enzyme activities and GSH levels decreased. Although, CH administration decreased the increased MDA and NO levels, it increased the decreased antioxidant enzyme activities and GSH levels. Histologically, it was determined that CH decreased the necrosis, hydropic degenerations and mononuclear cell infiltrations seen in the livers of rats treated with PbA. As a result, CH is effective in the reducing PbA damages in the liver.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • Abdel-Moneim A.M., El-Toweissy M.Y., Ali A.M., Allah A.A.M.A., Darwish H.S., Sadek, I.A. 2015. Curcumin ameliorates lead (Pb2+ )- induced hemato-biochemical alterations and renal oxidative damage in a rat model. Biol Trace Elem Res 168 (1): 206–220.
  • Adikwu, E., Deo, O., Geoffrey, O-B.P., Enimeya, D.A., 2013. Lead organ and tissue toxicity: roles of mitigating agents (part 1). Br J Pharmacol Toxicol 4 (6): 232–240.
  • Aebi. H. 1983. Catalase. In: H.U. Bergmeyer, editor. Methods in enzymatic analysis. New York: Academic Press, , pp 276– 286.
  • Ahamed, M. ve Siddiqui, M.K.J. 2007. Environmental Lead toxicity and nutritional factors. Clin Nutr 26 (4): 400–408.
  • Albasher, G., Al Kahtani, S., Alwahibi, M.S., Almeer, R. 2020. Effect of Moringa oleifera Lam. methanolic extract on lead-induced oxidative stressmediated hepatic damage and inflammation in rats. Environ Sci Pollut Res:1–11.
  • Alcaraz-Contreras, Y., Mendoza-Lozano, R.P., Martinez-Alcaraz, E.R., MartinezAlfaro, M., Gallegos-Corona, M.A., Ramirez-Morales, M.A., VazquezGuevara, M.A. 2016. Silymarin and dimercaptosuccinic acid ameliorate lead-induced nephrotoxicity and genotoxicity in rats. Hum Exp Toxicol 35(4):398–403.
  • Anitha, T.A., Rajadurai, M. 2014. Biomed. Prev. Nutr. (4)4, 511–517.
  • Casas, J.S. ve Sordo, J. 2011. Lead: chemistry, analytical aspects, environmental impact and health effects. Elsevier, p 366. Chrzanowska, A. Krawczyk, M., BarańczykKuźma, A. 2008. Changes in arginase isoenzymes pattern in human hepatocellular carcinoma. Biochem Biophys Res Commun; 377: 337-40.
  • Demir, F., Ozan, G., Temizer Ozan, P. S. 2015. Ratlara Uygulanan Kurşun Asetatın Karaciğer Arginazına Etkisi ve Enzimin Bazı Kinetik Özellikleri. Fırat Üniversitesi Sağlık Bilimleri Veteriner Dergisi, 29, (1): 37-43.
  • Eldutar, E., Kandemir, F.M., Kucukler, S., Caglayan, C. 2017. Restorative effects of Chrysin pretreatment on oxidant– antioxidant status, inflammatory cytokine production, and apoptotic and autophagicmarkers in acute paracetamol-induced hepatotoxicity in rats: An experimental and biochemical study. J Biochem Mol Toxicol, e21960.
  • Escuredo, O., Silva, L.R., Valentão, P., Seijo, M.C., Andrade, P.B. 2012. Assessing Rubus honey value: Pollen and phenolic compounds content and antibacterial capacity. Food Chem. 130, 671–678.
  • Flora, G., Gupta, D., Tıwar, A. 2012. Toxicity of lead: A review with recent updates. Interdiscip Toxicol. Vol. 5(2): 47–58.
  • Flora, S.J., Pande, M., Mehta, A. 2003. Benefi cial eff ect of combined administration of some naturally occurring antioxidants (vitamins) and thiol chelators in the treatment of chronic lead intoxication. Chem Biol Interact. 145: 267–280.
  • Geyer, J.W., Dabich, D. 1971. Rapid method for determination of arginase activity in tissue homogenates. Anal Biochem.39:412-7.
  • Grisham, M.B. 1997. Reactive metabolites of oxygen and nitrogen in biology and medicine. Biochem. Biophys. Res. Commun., 169: 70-75.
  • Halliwell, B. 1997.What nitrates tyrosineV Is nitrotyrosine specilic as a biomarker of peroxynitrate formation in vivo. FEBS U'tt, 411:157-160.
  • Hermenean, A.T., Mariasiu, I., NavarroGonzalez, J., Vegara-Meseguer, E., Miuțescu, S., Pérez-Sánche, H. 2017. Hepatoprotective activity of chrysin is mediated through TNF-α in chemicallyinduced acute liver damage: an in vivo study and molecular modeling. Exp. Therap. Med. 13.1671–1680.
  • Hsu, P.C. ve Guo, Y.L. 2002. Antioxidant nutrients and lead toxicity. Toxicology, 180: 33–44.
  • Ikemoto, M., Tabata, M., Murachi, T., Totani, M., 1989. Purification and properties of human erytrocyte arginase. Ann Clin Biochem., 26 (6): 547-553.
  • Kandemir, F.M., Kucukler, S., Caglayan, C., Gur, C., Batil, A.A., Gülçin, İ. 2017. Therapeutic effects of silymarin and naringin on methotrexate-induced nephrotoxicity in rats: biochemical evaluation of anti-inflammatory, antiapoptotic, and antiautophagic properties. J Food Biochem 41(5):e12398.
  • Kandemir, F.M., Özdemir, N. 2008. Sığır Dalak Doku Arginazının Bazı Kinetik Özellikleri. Fırat Üniversitesi Sağlık Bilimleri Veteriner Dergisi, 22 (3):153- 158.
  • Karrari, P., Mehrpour, O., Abdollahi, M. 2012. A systematic review on status of lead pollution and toxicity in Iran; guidance for preventive measures. DARU J Pharm Sci 20(1):2.
  • Kasperczyk, S., Dobrakowski, M., Kasperczyk, A., Machnik, G., Birkner, E. 2014. Effect of Nacetylcysteine administration on the expression and activities of antioxidant enzymes and the malondialdehyde level in the blood of lead-exposed workers. Environ. Toxicol. Pharmacol.,37:638-647.
  • Khalil, S.R., Elhady, W.M., Elewa, Y.H.A., Abd ElHameed, N.E., Ali, S.A. 2018a. Possible role of Arthrospira platensis in reversing oxidative stress-mediated liver damage in rats exposed to lead. Biomed Pharmacother = Biomed Pharmacother 97:1259–1268.
  • Khalil, S.R., Elhady, W.M., Elewa, Y.H.A., Abd ElHameed, N.E., Ali, S.A. 2018. Possible role of Arthrospira platensis in reversing oxidative stress-mediated liver damage in rats exposed to lead. Biomed Pharmacother 97:1259–1268.
  • Khalil, S.R., Khalifa, H.A., Abdel-Motal, S.M., Mohammed, H.H., Elewa, Y.H.A., Mahmoud, H.A. 2018b. Spirulina platensis attenuates the associated neurobehavioral and inflammatory response impairments in rats exposed to lead acetate. Ecotoxicol Environ Saf 157:255–265.
  • Khezri, S., Sabzalipour, T., Jahedsani, A., Azizian, S., Atashbar, S., Salimi, A. 2020. Chrysin ameliorates aluminum p hosphide-induced oxidative stress and mitochondrial damages in rat cardiomyocytes and isolated mitochondria. Environ. Toxicol.
  • Köksal, E., Bursal, E., Gülçin, İ., Korkmaz, M., Cağlayan, C., Gören, A.C., Alwasel, S.H. 2017. Antioxidant activity and polyphenol content of Turkish thyme (Thymus vulgaris) monitored by liquid chromatography and tandem mass spectrometry. Int J Food Prop 20(3):514– 525.
  • Kucukler, S., Benzer, F., Yildirim, S., Gur, C., Kandemir, F.M., Bengu, A.S., Ayna, A., Caglayan, C., Dortbudak M.B. 2021. Protective Effects of Chrysin Against Oxidative Stress and Inflammation Induced by Lead Acetate in Rat Kidneys: a Biochemical and Histopathological Approach. Biological Trace Element Research (2021) 199:1501–1514.
  • Lawrence, R. A., Burk, R. F. 1976. Glutathione peroxidase activity in seleniumdeficient rat liver. Biochemical and Biophysical Research Communications, 71:4, 952–958.
  • Lawton, L.J., Donaldson, W.E. 1991. Leadinduced tissue fatty acid alterations and lipid peroxidation. Biol. Trace Elem. Res., 28:83-97.
  • Liu, Z., Chen, Y., Wang, D., Wang, S., Zhang, Y.Q. 2010. Distinct Presynaptic and Postsynaptic Dismantling Processes of Drosophila Neuromuscular Junctions during Metamorphosis. J. Neurosci. 30(35): 11624--11634.
  • Lombardi, M.E., Ladman, B.S., Alphin, R.L., Benson, E.R. 2008. Inactivation of avian influenza virus using common detergents and chemicals. Avian Dis., 52:118–123.
  • Lopes, A.C., Peixe, T.S., Mesas, A.E., Paoliello, M.M. 2016. Lead exposure and oxidative stress: a systematic review. Rev Environ Contam Toxicol 236:193– 238.
  • Macsi, O., Carelli, G., Vinci, F., Castellino, N. 1998. “Blood lead concentration on biological effects in workers exposed to very low lead levels”, J. Occup. Environ. Med., 40: 886-894.
  • Matović,V., Buha, A., Ðukić-Ćosić, D., Bulat, Z. 2015. Insight into the oxidative stress induced by lead and/or cadmium in blood, liver and kidneys, Food and Chemical Toxicology, 78:130-140.
  • Modesto Dos Santos, V., Da Costa Arruda Jr., Z., De FariasPolcheira, M., Da Silva De Souza, D.W., Rodrigues Oliveira Santos, A.M., Santos Corrêa Da Costa, M., 2013. Acutehepatitis due to infectious mononucleosis in a 21-yearold-man. Rev. Méd. Chil., 141:917–921.
  • Mudipalli, A. 2007. Lead hepatotoxicity and potential health effects. IJMR 126(6):518.
  • Omobowale, T.O., Oyagbemi, A.A., Akinrinde, A.S., Saba, A.B., Daramola, O.T., Ogunpolu, B.S., Olopade, J.O. 2014. Failure of recovery from lead induced hepatoxicityand disruption of erythrocyte antioxidant defencesystem in Wistar rats. environmental toxicology and pharmacology 37:1202–1211.
  • Ozkaya, A., Şahin, Z., Kuzu, M., Saglam, Y.S., Ozkaraca, M., Uckun, M., Yologlu, E., Comakli, V., Demirdag, R., Yologlu, S. 2018. Role of geraniol against lead acetate-mediated hepatic damage and their interaction with liver carboxylesterase activity in rats. Arch Physiol Biochem., 124(1):80-87.
  • Palmer, R.M.J., Moncada, S. 1989. A novel citrulline-forming enzyme implicated in the formation of nitric oxide by vasculer endothelial cells. Biochemical and Biophysical Research Communications, 158:348-352.
  • Patil, A.J. Bhagwat, V.R.,Jyotsna, Dongre, N.N., Ambekar, J.G, Das, K.K. 2006. Bıochemıcal aspects of lead exposure in sılver jewelry workers in western Maharashtra (India). J Basic Clin Physiol Pharmacol. 17(4):213-29.
  • Patra, R.C., Rautray, A.K., Swarup, D. 2011. Oxidative Stress in Lead and Cadmium Toxicity and Its Amelioration. Vet Med Int. 457327. doi: 10.4061/2011/457327.
  • Phaniendra, A., Jestadi, D.B., Periyasamy, L. 2015. Free Radicals: Properties, Sources, Targets, and Their Implication in Various Diseases. Ind J Clin Biochem. 30(1):11–26.
  • Pionelli, S. 2002. Childhood lead poisoning. Pediatr Clin North Am, 49:1285-304.
  • Placer, Z. A., Cushman, L. L., Johnson, B. C. 1966. Estimation of product of lipid peroxidation (malonyl dialdehyde) in biochemical systems. Analytical Biochemistry, 16(2), 359–364.
  • Pushpavalli, G., Kalaiarasi, P., Veeramani, C., Pugalendi, K.V. 2010. Eur. J. Pharmacol., 631:36–41.
  • Sallie, R., Tredger, J.M., Willam, R. 1991. Drugs and the liver. Biopharm Drug Dispos, 12:251–259.
  • Sedlak, J., Lindsay, R. H. 1968. Estimation of total, protein-bound, and nonprotein sulfhydryl groups in tissue with Ellman's reagent. Analytical Biochemistry, 25:1, 192–205.
  • Sehrawat, A. ve Sultana, S. 2006. Evaluation of possible mechanisms of protective role of Tamarix gallica against DEN initiated and 2-AAF promoted hepatocarcinogenesis in male Wistar rats. Life Sci, 79:1456–65.
  • Sun, Y., Oberley, L. W., Li, Y. 1988. A simple method for clinical assay of superoxide dismutase. Clinical Chemistry, 34:3, 497–500.
  • Tan, B.L., Norhaizan, M.E., Liew, W.P.P., Sulaiman Rahman, H. 2018. Antioxidant and oxidative stress: a mutual interplay in age-related diseases. Front Pharmacol 9 :1162.
  • Tandon, S.K., Prasad, S., Singh, S., Shukla, M., Chatterjee, M. 2002. Influence of age on leadinduced oxidative stress. Biol. Trace Element Res., 88: 59-68.
  • Taslimi, P., Kandemir, F.M., Demir, Y., Ileriturk, M., Temel, Y., Caglayan, C., Gulcin, I. 2019. The antidiabetic and anticholinergic effects of chrysin on cyclophosphamide-induced multiple organ toxicity in rats: pharmacological evaluation of some metabolic enzyme activities. J Biochem Mol Toxicol:e22313. doi:https://doi.org/10.1002/ jbt.22313.
  • Temel, Y., Kucukler, S., Yıldırım, S., Caglayan, C., Kandemir, F. M. 2020. Protective effect of chrysin on cyclophosphamideinduced hepatotoxicity and nephrotoxicity via the inhibition of oxidative stress, inflammation, and apoptosis. Naunyn-Schmiedeberg's archives of pharmacology, 393(3), 325- 337.
  • Trefts, E., Gannon, M., Wasserman D.H. 2017. The liver. Current Biology, 27:1141– 1155.
  • Valverde, M., Trejo, C., Rojas, E. 2001. Is the capacity of lead acetate and cadmium chloride to induce genotoxic damage due to direct DNA-metal interaction? Mutagenesis, 16(3):265- 270.
  • Vaziri, N.D., Ding, Y., Ni, Z., Gonick, H.C. 1997. Altered nitric oxide metabolism and increased oxygen tree radical activity in Icad-induced hypertension: effect of lazaroid therapy. Kidney Int., 52:1042- 1046.
  • Vaziri, N.D., Oveisi, F., Ding.,Y. 1998. Role of increased oxygen free radical activity in the pathogenesis of uremic hypertension. Kidney Int., 53:1748- 1754.
  • Vaziri, N.D., Wang, X.Q., Oveisi, F., Rad, B. 2000. Induction of oxidative stress by glutathione depletion causes severe hypertension in normal rats. Hypertension, 36:142-146.
  • Wang, G. ve Fowler, B.A. 2008. Roles of biomarkers in evaluating interactions among mixtures of lead, cadmium and arsenic. Toxicol. Appl. Pharmacol., 233:92-99.
  • World Health Organization 1995. “Inorganic Lead. WHO”, Geneva Environmental Health Criteria 165.
  • Yeung, A.W.K., Tzvetkov, N.T., El-Tawil, O.S., Bungǎu, S.G., Abdel-Daim, M.M., Atanasov, A.G. 2019. Antioxidants: scientific literature landscape analysis. Oxidative Med Cell Longev 2019:8278454– 8278411.
  • Zheng, H.X., Qi, S.S., He, J., Hu, C.Y., Han, H., Jiang, H., Li, X.S. 2020. Cyanidin-3- glucoside from black rice ameliorates diabetic nephropathy via reducing blood glucose, suppressing oxidative stress and inflammation, and regulating transforming growth factor beta1/ Smad expression. J Agric Food Chem 68(15):4399–4410.
APA COŞKUN P, BENZER F, KANDEMİR F, yildirim S, KÜÇÜKLER S (2021). Ratlarda Kurşun Asetat Kaynaklı Karaciğer Hasarı Üzerine Chrysin’ in Etkilerinin Araştırılması. , 250 - 261. 10.30910/turkjans.876603
Chicago COŞKUN Pınar,BENZER Fulya,KANDEMİR Fatih Mehmet,yildirim Serkan,KÜÇÜKLER Sefa Ratlarda Kurşun Asetat Kaynaklı Karaciğer Hasarı Üzerine Chrysin’ in Etkilerinin Araştırılması. (2021): 250 - 261. 10.30910/turkjans.876603
MLA COŞKUN Pınar,BENZER Fulya,KANDEMİR Fatih Mehmet,yildirim Serkan,KÜÇÜKLER Sefa Ratlarda Kurşun Asetat Kaynaklı Karaciğer Hasarı Üzerine Chrysin’ in Etkilerinin Araştırılması. , 2021, ss.250 - 261. 10.30910/turkjans.876603
AMA COŞKUN P,BENZER F,KANDEMİR F,yildirim S,KÜÇÜKLER S Ratlarda Kurşun Asetat Kaynaklı Karaciğer Hasarı Üzerine Chrysin’ in Etkilerinin Araştırılması. . 2021; 250 - 261. 10.30910/turkjans.876603
Vancouver COŞKUN P,BENZER F,KANDEMİR F,yildirim S,KÜÇÜKLER S Ratlarda Kurşun Asetat Kaynaklı Karaciğer Hasarı Üzerine Chrysin’ in Etkilerinin Araştırılması. . 2021; 250 - 261. 10.30910/turkjans.876603
IEEE COŞKUN P,BENZER F,KANDEMİR F,yildirim S,KÜÇÜKLER S "Ratlarda Kurşun Asetat Kaynaklı Karaciğer Hasarı Üzerine Chrysin’ in Etkilerinin Araştırılması." , ss.250 - 261, 2021. 10.30910/turkjans.876603
ISNAD COŞKUN, Pınar vd. "Ratlarda Kurşun Asetat Kaynaklı Karaciğer Hasarı Üzerine Chrysin’ in Etkilerinin Araştırılması". (2021), 250-261. https://doi.org/10.30910/turkjans.876603
APA COŞKUN P, BENZER F, KANDEMİR F, yildirim S, KÜÇÜKLER S (2021). Ratlarda Kurşun Asetat Kaynaklı Karaciğer Hasarı Üzerine Chrysin’ in Etkilerinin Araştırılması. Türk Tarım ve Doğa Bilimleri Dergisi, 8(2), 250 - 261. 10.30910/turkjans.876603
Chicago COŞKUN Pınar,BENZER Fulya,KANDEMİR Fatih Mehmet,yildirim Serkan,KÜÇÜKLER Sefa Ratlarda Kurşun Asetat Kaynaklı Karaciğer Hasarı Üzerine Chrysin’ in Etkilerinin Araştırılması. Türk Tarım ve Doğa Bilimleri Dergisi 8, no.2 (2021): 250 - 261. 10.30910/turkjans.876603
MLA COŞKUN Pınar,BENZER Fulya,KANDEMİR Fatih Mehmet,yildirim Serkan,KÜÇÜKLER Sefa Ratlarda Kurşun Asetat Kaynaklı Karaciğer Hasarı Üzerine Chrysin’ in Etkilerinin Araştırılması. Türk Tarım ve Doğa Bilimleri Dergisi, vol.8, no.2, 2021, ss.250 - 261. 10.30910/turkjans.876603
AMA COŞKUN P,BENZER F,KANDEMİR F,yildirim S,KÜÇÜKLER S Ratlarda Kurşun Asetat Kaynaklı Karaciğer Hasarı Üzerine Chrysin’ in Etkilerinin Araştırılması. Türk Tarım ve Doğa Bilimleri Dergisi. 2021; 8(2): 250 - 261. 10.30910/turkjans.876603
Vancouver COŞKUN P,BENZER F,KANDEMİR F,yildirim S,KÜÇÜKLER S Ratlarda Kurşun Asetat Kaynaklı Karaciğer Hasarı Üzerine Chrysin’ in Etkilerinin Araştırılması. Türk Tarım ve Doğa Bilimleri Dergisi. 2021; 8(2): 250 - 261. 10.30910/turkjans.876603
IEEE COŞKUN P,BENZER F,KANDEMİR F,yildirim S,KÜÇÜKLER S "Ratlarda Kurşun Asetat Kaynaklı Karaciğer Hasarı Üzerine Chrysin’ in Etkilerinin Araştırılması." Türk Tarım ve Doğa Bilimleri Dergisi, 8, ss.250 - 261, 2021. 10.30910/turkjans.876603
ISNAD COŞKUN, Pınar vd. "Ratlarda Kurşun Asetat Kaynaklı Karaciğer Hasarı Üzerine Chrysin’ in Etkilerinin Araştırılması". Türk Tarım ve Doğa Bilimleri Dergisi 8/2 (2021), 250-261. https://doi.org/10.30910/turkjans.876603