Yıl: 2021 Cilt: 7 Sayı: 2 Sayfa Aralığı: 138 - 149 Metin Dili: İngilizce DOI: 10.17216/limnofish.789669 İndeks Tarihi: 29-07-2022

Effects of Aquacultural Practices on the Sediment Characteristics of Certain Type of Earthen Fishponds

Öz:
The effect of aquacultural practices on the bottom sediment quality of six selected earthen fishponds in Ife North Local Government Area of Osun State was investigated for a period of two years. The fishponds were grouped with regard to fertilization practice and water flowage regime into three sets comprising two fertilized non-flow-through ponds (FNF); two fertilized flow-through ponds (FF) and two unfertilized flow-through ponds (NFF). The investigated sediment quality parameters include color and textural composition, salinity parameters, major ions, organic parameters and heavy metals using standard methods. The parameters were not statistically different (P > 0.05) for the three sets of fishponds with the exception of calcium which was significantly available in the fertilized flow-through pond. The fertilized ponds were however richer in nutrient and of better drainage quality than the unfertilized ponds. The parameters with higher mean in the fertilized ponds (FNF and FF) were 16% higher on average and flow-affected parameters were 67% higher on average in the flow-through ponds (FF and NFF), of which 7.00-fold higher lead concentration contributed most to this situation. Of these parameters, cations, anions, micronutrients were found to be of highest mean concentration in fertilized flow-through ponds. However, the presence of significant levels of calcium ions as well as minimal accumulation of clay, silt and nutrients in fertilized flow ponds made this fish culture method most suitable.
Anahtar Kelime: fish culture drainage heavy metal nutrient sediment salinity

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • Adedeji AA. 2011. The water quality, zooplankton and macrobenthic invertebrate faunae in relation to aquacultural practice and management of fishponds in Ife-North Area, Osun State, Nigeria. [Ph.D Thesis]. Obafemi Awolowo University, Ile Ife. 284 p.
  • Ademoroti CMA. 1996. Standard methods for water and effluents analysis. Ibadan, Nigeria: Foludex Press Ltd. 3, 29-118.
  • Aldorfer RB. 1974. McGraw Hill Encyclopedia of Environmental Science. New York: McGraw Hill Company. pp 543-545.
  • Berkowitz JF, Van dccZomeren CM, Priestas AM. 2018. Investigating sediment color change dynamics to increase beneficial use applications. Paper presented at: Proceedings of the Western Dredging Association Dredging Summit & Expo’18; Norfolk, VA, USA.
  • Bouyoucos GJ. 1962. Hydrometer method improved for making particle size analysis of soils. Agron J. 54(5):464-465. doi: 10.2134/agronj1962.00021962005400050028x
  • Boyd CE. 1995. Bottom soils, sediment, and pond aquaculture. New York: Chapman and Hall. 348 p.
  • Boyd CE, Tucker CS. 1998. Pond aquaculture water quality management. Norwell, Massachusetts: Kluwer Academic Publishers.
  • Boyd CE, Woods CW, Thunjai T. 2002. Aquaculture pond bottom soil quality management. Pond dynamics/aquaculture collaborative research support program. Corvallis: Oregon State University 41 p.
  • Chapman D. 1996. Water quality assessments: a guide to the use of biota, sediments, and water in environmental monitoring. UNESCO ⁄WHO⁄ UNEP. New York: Chapman & Hall, London.
  • Gautam B, Bhattarai B. 2008. Seasonal changes in water quality parameters and sediment nutrients in Jagadishpur Reservoir, a Ramsar site in Nepal. Nepal Journal of Science and Technology. 9:149-156. doi: 10.3126/njst.v9i0.3180
  • Gerhardt S, Boos K, Schink B. 2010. Uptake and release of phosphate by littoral sediment of a freshwater lake under the influence of light or mechanical perturbation. J Limnol. 69(1): 54-63. doi: 10.4081/jlimnol.2010.54
  • Hammer O, Harper DAT, Ryan PD. 2001. Palaeontological statistics software package for education and data analysis. Palaeontol Electron. 4(1):9.
  • Hartono A, Anwar S, Hazra F, Prasetyo Y, Putril S. 2019. Application of fishpond sediment and water to increase the efficiency of phosphorus fertilization in land integrating agriculture and fishery. IOP Conference Series: Earth Environ Sci. 393(2019):012035. doi: 10.1088/1755-1315/393/1/012035.
  • Jamu DM, Piedrahita RH. 2001. Ten year simulations of organic matter concentrations in tropical aquaculture ponds using the multiple pool modelling approach. Aquacult Eng. 25(3):187–201. doi: 10.1016/S0144-8609(01)00082-6
  • Ludwig GM. 2002. The Effect of increasing organic and inorganic fertilizer on water quality, primary production, zooplankton, and sunshine bass, Morone chrysops X M. saxatilis, fingerling production. Journal of Applied Aquaculture. 12(2):1-29. doi: 10.1300/J028v12n02_01
  • MacDonald DD, Ingersoll CG, Berger TA. 2000. Development and evaluation of consensus-based sediment quality guidelines for freshwater ecosystems. Arch Environ Con Tox. 39:20-31. doi: 10.1007/s002440010075
  • Muendo PN, Verdegem MC, Stoorvogel JJ, Milstein A, Gamal EN, Duc PM, Verreth JAJ. 2014. Sediment accumulation in fish ponds; its potential for agricultural use. International Journal of Fisheries and Aquaculture Studies. 1(5):228-241.
  • Munsiri P, Boyd CE, Hajek BJ. 1995. Physical and chemical characteristics of bottom soil profiles in ponds at Auburn, Alabama, USA, and a proposed method for describing pond soil horizons. J World Aquacult Soc. 26(4):346-377. doi: 10.1111/j.1749-7345.1995.tb00831.x
  • Persaud D, Jaagumagi R, Hayton A. 1993. Guidelines for the protection and management of aquatic sediment quality in Ontario. Water Resources Branch, Ontario Ministry of the Environment, Toronto, Canada.
  • Rahman MM, Yakupitiyage A, Ranamukhaarachchi SL. 2004. Agricultural use of fishpond sediment for environmental amelioration. Thammasat International Journal of Science and Technology. 9(4):1-10.
  • Shields JA, Arnaud ST, Paul EA, Clayton JS. 1966. Measurement of soil colour. Can J Soil Sci. 46(1):83-90. doi: 10.4141/cjss66-012
  • Singare PU, Trivedi MP, Mishra RM. 2011. Assessing the physico-chemical parameters of sediment ecosystem of Vasai Creek at Mumbai, India. Marine Science. 1(1):22-29. doi: 10.5923/j.ms.20110101.03
  • SPSS. 2012. Statistical Package for the Social Sciences Base 21 for Windows. SPSS Inc., Chicago.
  • Tsadu SM. 1998. Sediment nutrient dynamics, pollution and aquatic productivity. In: Otubu S., Ezerie N.O., Ugwumba O.A. and Ugwumba A.A.A, editors. Selected papers from 9th / 10th Annual Conference of the Nigeria Association for Aquatic Sciences, Abeokuta, 30th November – 2nd December 1995. pp 229-240.
  • Wurts WA, Durborow RM. 1992. Interactions of pH, carbon dioxide, alkalinity and hardness in fishponds. Southern Regional Aquaculture Centre Publication No 464.
  • Wurts WA, Masser MP. 2004. Liming ponds for aquaculture. Southern Regional Aquaculture Centre Publication No 4100.
  • Wurt WA, Perschbacher PW. 1994. Effects of bicarbonate alkalinity and calcium on the acute toxicity of copper to juvenile channel catfish (Ictalurus punctatus). Aquaculture. 125(1-2):73-79. doi: 10.1016/0044-8486(94)90284-4
  • Wurts WA. 2002. Alkalinity and hardness in production ponds. World Aquaculture. 33(1):16-1
APA ADEDEJI A (2021). Effects of Aquacultural Practices on the Sediment Characteristics of Certain Type of Earthen Fishponds. , 138 - 149. 10.17216/limnofish.789669
Chicago ADEDEJI Adebukola Effects of Aquacultural Practices on the Sediment Characteristics of Certain Type of Earthen Fishponds. (2021): 138 - 149. 10.17216/limnofish.789669
MLA ADEDEJI Adebukola Effects of Aquacultural Practices on the Sediment Characteristics of Certain Type of Earthen Fishponds. , 2021, ss.138 - 149. 10.17216/limnofish.789669
AMA ADEDEJI A Effects of Aquacultural Practices on the Sediment Characteristics of Certain Type of Earthen Fishponds. . 2021; 138 - 149. 10.17216/limnofish.789669
Vancouver ADEDEJI A Effects of Aquacultural Practices on the Sediment Characteristics of Certain Type of Earthen Fishponds. . 2021; 138 - 149. 10.17216/limnofish.789669
IEEE ADEDEJI A "Effects of Aquacultural Practices on the Sediment Characteristics of Certain Type of Earthen Fishponds." , ss.138 - 149, 2021. 10.17216/limnofish.789669
ISNAD ADEDEJI, Adebukola. "Effects of Aquacultural Practices on the Sediment Characteristics of Certain Type of Earthen Fishponds". (2021), 138-149. https://doi.org/10.17216/limnofish.789669
APA ADEDEJI A (2021). Effects of Aquacultural Practices on the Sediment Characteristics of Certain Type of Earthen Fishponds. Journal of Limnology and Freshwater Fisheries Research, 7(2), 138 - 149. 10.17216/limnofish.789669
Chicago ADEDEJI Adebukola Effects of Aquacultural Practices on the Sediment Characteristics of Certain Type of Earthen Fishponds. Journal of Limnology and Freshwater Fisheries Research 7, no.2 (2021): 138 - 149. 10.17216/limnofish.789669
MLA ADEDEJI Adebukola Effects of Aquacultural Practices on the Sediment Characteristics of Certain Type of Earthen Fishponds. Journal of Limnology and Freshwater Fisheries Research, vol.7, no.2, 2021, ss.138 - 149. 10.17216/limnofish.789669
AMA ADEDEJI A Effects of Aquacultural Practices on the Sediment Characteristics of Certain Type of Earthen Fishponds. Journal of Limnology and Freshwater Fisheries Research. 2021; 7(2): 138 - 149. 10.17216/limnofish.789669
Vancouver ADEDEJI A Effects of Aquacultural Practices on the Sediment Characteristics of Certain Type of Earthen Fishponds. Journal of Limnology and Freshwater Fisheries Research. 2021; 7(2): 138 - 149. 10.17216/limnofish.789669
IEEE ADEDEJI A "Effects of Aquacultural Practices on the Sediment Characteristics of Certain Type of Earthen Fishponds." Journal of Limnology and Freshwater Fisheries Research, 7, ss.138 - 149, 2021. 10.17216/limnofish.789669
ISNAD ADEDEJI, Adebukola. "Effects of Aquacultural Practices on the Sediment Characteristics of Certain Type of Earthen Fishponds". Journal of Limnology and Freshwater Fisheries Research 7/2 (2021), 138-149. https://doi.org/10.17216/limnofish.789669