Yıl: 2021 Cilt: 45 Sayı: 1 Sayfa Aralığı: 1 - 16 Metin Dili: İngilizce İndeks Tarihi: 29-07-2022

Endoplasmic reticulum stress and oncomir-associated chemotherapeutic drug resistance mechanisms in breast cancer tumors

Öz:
Breast cancer, as a heterogenous malign disease among the top five leading causes of cancer death worldwide, is defined as by far the most common malignancy in women. It contributes to 25% of all cancer-associated deaths after menopause. Breast cancer is categorized based on the expression levels of cell surface and intracellular steroid receptors [estrogen, progesterone receptors, and human epidermal growth factor receptor (HER2)], and the treatment approaches frequently include antiestrogen, aromatase inhibitors, and Herceptin. However, the management and prevention strategies due to adverse side effects stress the patients. The unsuccessful treatments cause to raise the drug levels, leading to excessive toxic effects on healthy cells, and the development of multidrug-resistance (MDR) in the tumor cells against chemotherapeutic agents. MDR initially causes the tumor cells to gain a metastatic character, and subsequently, the patients do not respond adequately to treatment. Endoplasmic reticulum (ER) stress is one of the most important mechanisms supporting MDR development. ER stress-mediated chemotherapeutic resistance is very common in aggressive tumors. The in vitro and in vivo experiments on breast tumors indicate that ER stress-activated protein kinase R (PKR)-like endoplasmic reticulum kinase (PERK)- activating transcription factor (ATF4) signal axis plays an important role in the survival of tumors and metastasis. Besides, ER stress-associated oncogenic microRNAs (miRNAs) induce chemoresistance in breast tumors. We aimed to have a look at the development of resistance mechanisms due to ER stress as well as the involvement of ER stress-associated miRNA regulation following the chemotherapeutic regimen in the human breast tumors. We also aimed to draw attention to potential molecular markers and therapeutic targets.
Anahtar Kelime: oncomir breast cancer unfolded protein response multidrug resistance Endoplasmic reticulum stress

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • Alamolhodaei N, Behravan J, Mosaffa F, Karimi G (2017). MiR 221/222 as new players in tamoxifen resistance. Current Pharmaceutical Design 22 (46): 6946-6955. doi: 10.2174/13816 12822666161102100211.
  • Andruska N, Zheng X, Yang X, Helferich WG, Shapiro DJ (2015). Anticipatory estrogen activation of the unfolded protein response is linked to cell proliferation and poor survival in estrogen receptor α-positive breast cancer. Oncogene 34 (29): 3760-3769. doi: 10.1038/onc.2014.292.
  • Assaraf YG, Brozovic A, Gonçalves AC, Jurkovicova D, Linē A et al. (2019). The multi-factorial nature of clinical multidrug resistance in cancer. Drug Resistance Updates 46: 100645. doi: 10.1016/j.drup.2019.100645.
  • Avril T, Vauléon E, Chevet E (2017). Endoplasmic reticulum stress signaling and chemotherapy resistance in solid cancers. Oncogenesis 6 (8): e373. doi: 10.1038/oncsis.2017.72.
  • Balaji SA, Udupa N, Chamallamudi MR, Gupta V, Rangarajan A (2016). Role of the drug transporter ABCC3 in breast cancer chemoresistance. PLoS One 11 (5): e0155013. doi: 10.1371/ journal.pone.0155013.
  • Baliu-Piqué M, Pandiella A, Ocana A (2020). Breast cancer heterogeneity and response to novel therapeutics. Cancers 12 (11): 3271. doi: 10.3390/cancers12113271.
  • Cai Y, Zheng Y, Gu J, Wang S, Wang N et al. (2018). Betulinic acid chemosensitizes breast cancer by triggering ER stress-mediated apoptosis by directly targeting GRP78. Cell Death & Disease 9 (6): 9. doi: 10.1038/s41419-018-0669-8.
  • Caswell-Jin JL, McNamara K, Reiter JG, Sun R, Hu Zet al. (2019). Clonal replacement and heterogeneity in breast tumors treated with neoadjuvant HER2-targeted therapy. Nature Communications 10 (1): 657. doi: 10.1038/s41467-019-08593- 4.
  • Cava C, Bertoli G, Castiglioni I (2018). In silico identification of drug target pathways in breast cancer subtypes using pathway crosstalk inhibition. Journal of Translational Medicine 16 (1): 154. doi: 10.1186/s12967-018-1535-2.
  • Chakravarty G, Mathur A, Mallade P, Gerlach S, Willis J et al. (2016). Nelfinavir targets multiple drug resistance mechanisms to increase the efficacy of doxorubicin in MCF-7/Dox breast cancer cells. Biochimie 124: 53-64. doi: 10.1016/j. biochi.2016.01.014.
  • Chevet E, Hetz C, Samali A(2015). Endoplasmic reticulum stressactivated cell reprogramming in oncogenesis. Cancer Discovery 5 (6): 586-597. doi: 10.1158/2159-8290.cd-14-1490.
  • Cheng GZ, Chan J, Wang Q, Zhang W, Sun CD et al. (2007). Twist transcriptionally up-regulates AKT2 in breast cancer cells leading to increased migration, invasion, and resistance to paclitaxel. Cancer Research 67 (5): 1979-1987. doi: 10.1158/0008-5472.can-06-1479.
  • Chhabra R, Dubey R, Saini N (2011). Gene expression profiling indicates the role of ER stress in miR-23a~27a~24-2 cluster induced apoptosis in HEK293T cells. RNA Biology 8 (4): 648- 664. doi: 10.4161/rna.8.4.15583.
  • Cook KL, Clarke PA, Parmar J, Hu R, Schwartz-Roberts JL et al. (2014). Knockdown of estrogen receptor-α induces autophagy and inhibits antiestrogen-mediated unfolded protein response activation, promoting ROS-induced breast cancer cell death. The FASEB Journal: official publication of the Federation of American Societies for Experimental Biology 28 (9): 3891- 3905. doi: 10.1096/fj.13-247353.
  • Dávila-González D, Choi DS, Rosato RR, Granados-Principal SM, Kuhn JG et al. (2018). Pharmacological inhibition of NOS activates ASK1/JNK pathway augmenting docetaxel-mediated apoptosis in triple-negative breast cancer. Clinical Cancer Research 24 (5): 1152-1162. doi: 10.1158/1078-0432.ccr-17- 1437.
  • Deepak KGK, Vempati R, Nagaraju GP, Dasari VRSN, Rao DN et al. (2020). Tumor microenvironment: challenges and opportunities in targeting metastasis of triple negative breast cancer. Pharmacological Research 153: 104683. doi: 10.1016/j. phrs.2020.104683.
  • Demaria M, O’Leary MN, Chang J, Shao L, Liu S et al. (2016). Cellular senescence promotes adverse effects of chemotherapy and cancer relapse. Cancer Discovery 7 (2): 165-176. doi: 10.1158/2159-8290.cd-16-0241.
  • De Mattia E, Cecchin E, Toffoli G (2015). Pharmacogenomics of intrinsic and acquired pharmacoresistance in colorectal cancer: toward targeted personalized therapy. Drug Resistance Updates 20: 39-70. doi: 10.1016/j.drup.2015.05.003.
  • De Mattos-Arruda L, Bottai G, Nuciforo PG, Di Tommaso L, Giovannetti E et al. (2015). MicroRNA-21 links epithelial-tomesenchymal transition and inflammatory signals to confer resistance to neoadjuvant trastuzumab and chemotherapy in HER2-positive breast cancer patients. Oncotarget 6 (35): 37269-37280. doi: 10.18632/oncotarget.5495.
  • Dong X, Bai X, Ni J, Zhang H, Duan W et al. (2020). Exosomes and breast cancer drug resistance. Cell Death & Disease 11 (11): 987. doi: 10.1038/s41419-020-03189-z
  • Duncan JS, Whittle MC, Nakamura K, Abell AN, Midland AA et al. (2012). Dynamic reprogramming of the kinome in response to targeted MEK inhibition in triple-negative breast cancer. Cell 149 (2): 307-321. doi: 10.1016/j.cell.2012.02.053.
  • Fultang N, Illendula A, Lin J, Pandey MK, Klase Zet al. (2020). ROR1 regulates chemoresistance in Breast Cancer via modulation of drug efflux pump ABCB1. Scientific Reports 10 (1): 1. doi: 10.1038/s41598-020-58864-0.
  • Gooding AJ, Schiemann WP (2020). Epithelial–mesenchymal transition programs and cancer stem cell phenotypes: mediators of breast cancer therapy resistance. Molecular Cancer Research 18 (9): 1257-1270. doi: 10.1158/1541-7786. mcr-20-0067.
  • Gao Y, Li X, Zeng C, Liu C, Hao Q et al. (2020). CD63+ Cancerassociated fibroblasts confer tamoxifen resistance to breast cancer cells through exosomal miR-22. Advanced Science 7 (21): 2002518. doi: 10.1002/advs.202002518.
  • Gupta PB, Onder TT, Jiang G, Tao K, Kuperwasser C et al. (2009). Identification of selective inhibitors of cancer stem cells by high-throughput screening. Cell 138 (4): 645-659. doi: 10.1016/j.cell.2009.06.034.
  • Hartman ZC, Poage GM, Den Hollander P, Tsimelzon A, Hill J et al. (2013). Growth of triple-negative breast cancer cells relies upon coordinate autocrine expression of the proinflammatory cytokines IL-6 and IL-8. Cancer Research 73 (11): 3470-3480. doi: 10.1158/0008-5472.can-12-4524-t.
  • Harbeck N, Penault-Llorca F, Cortes J, Gnant M, Houssami N et al. (2019). Breast cancer. Nature Reviews Disease Primers 5 (1): 66. doi: 10.1038/s41572-019-0111-2.
  • Han W, Cui H, Liang J, Su X (2020). Role of MicroRNA-30c in cancer progression. Journal of Cancer 11 (9): 2593-2601. doi: 10.7150/ jca.38449.
  • Hemmatzadeh M, Shomali N, Yousefzadeh Y, Mohammadi H, Ghasemzadeh A et al. (2019). MicroRNAs: small molecules with a large impact on pre‐eclampsia. Journal of Cellular Physiology 235 (4): 3235-3248. doi: org/10.1002/jcp.29286.
  • Hillary RF, Fitz Gerald U (2018). A lifetime of stress: ATF6 in development and homeostasis. Journal of Biomedical Science 25 (1): 48. doi: 10.1186/s12929-018-0453-1.
  • Hosseini H, Obradović MMS, Hoffmann M, Harper KL, Sosa MS et al. (2019). Breast cancer. Nature Reviews Disease Primers 5 (1): 66. doi: 10.1038/s41572-019-0111-2.
  • Hotamisligil GS, Davis RJ (2016). Cell signaling and stress responses. Cold Spring Harbor Perspectives in Biology 8 (10): a006072. doi: 10.1101/cshperspect.a006072.
  • Huang D, Duan H, Huang H, Tong X, Han Y et al. (2016). Cisplatin resistance in gastric cancer cells is associated with HER2 upregulation-induced epithelial-mesenchymal transition. Scientific Reports 6 (1): 20502. doi: 10.1038/srep20502.
  • Jafari SH, Saadatpour Z, Salmaninejad A, Momeni F, Mokhtari M et al. (2018). Breast cancer diagnosis: imaging techniques and biochemical markers. Journal of Cellular Physiology 233 (7): 5200-5213. doi: 10.1002/jcp.26379.
  • Jiang Z, Zhang G, Huang L, Yuan Y, Wu Cet al. (2020). Transmissible endoplasmic reticulum stress: a novel perspective on tumor immunity. Frontiers in Cell and Developmental Biology 8: 846. doi: 10.3389/fcell.2020.00846.
  • Katsuno Y, Meyer DS, Zhang Z, Shokat KM, Akhurst RJ et al. (2019). Chronic TGF-β exposure drives stabilized EMT, tumor stemness, and cancer drug resistance with vulnerability to bitopic mTOR inhibition. Science Signaling 12 (570): eaau8544. doi: 10.1126/scisignal.aau8544.
  • Kim MR, Choi HK, Cho KB, Kim HS, Kang KW (2009). Involvement of Pin1 induction in epithelial-mesenchymal transition of tamoxifen-resistant breast cancer cells. Cancer Science 100 (10): 1834-1841. doi: 10.1111/j.1349-7006.2009.01260.x.
  • Ke K, Lou T (2017). MicroRNA-10a suppresses breast cancer progression via PI3K/Akt/mTOR pathway. Oncology Letters 14 (5): 5994-6000. doi: 10.3892/ol.2017.6930.
  • Kong D, Li Y, Wang Z, Sarkar FH (2011). Cancer stem cells and epithelial-to-mesenchymal transition (EMT)-phenotypic cells: are they cousins or twins? Cancers Basel 3 (1): 716-729. doi: 10.3390%2Fcancers30100716.
  • Li YJ, Lei YH, Yao N, Wang CR, Hu N et al. (2017). Autophagy and multidrug resistance in cancer. Chinese Journal Cancer 36 (1): 52. doi: 10.1186/s40880-017-0219-2.
  • Li X, Strietz J, Bleilevens A, Stickeler E, Maurer J (2020). Chemotherapeutic stress influences epithelial-mesenchymal transition and stemness in cancer stem cells of triple-negative breast cancer. International Journal of Molecular Sciences 21 (2): 404. doi: 10.3390/ijms21020404.
  • Li X, Wu Y, Liu A, Tang X (2016). MiR-27b is epigenetically downregulated in tamoxifen resistant breast cancer cells due to promoter methylation and regulates tamoxifen sensitivity by targeting HMGB3. Biochemical and Biophysical Research Communications 477 (4): 768-773. doi: 10.1016/j. bbrc.2016.06.133.
  • Li N, Miao Y, Shan Y, Liu B, Li Y et al. (2017). MiR-106b and miR-93 regulate cell progression by suppression of PTEN via PI3K/Akt pathway in breast cancer. Cell Death & Disease 8 (5): e2796. doi: 10.1038/cddis.2017.119.
  • Li Z, Zou W, Zhang J, Zhang Y, Xu Q et al. (2020). Mechanisms of CDK4/6 inhibitor resistance in luminal breast cancer. Frontiers in Pharmacology 11: 1. doi: 10.3389/fphar.2020.580251.
  • Logue SE, McGrath EP, Cleary P, Greene S, Mnich K et al. (2018). Inhibition of IRE1 RNase activity modulates the tumor cell secretome and enhances response to chemotherapy. Nature Communications 9 (1): 3267. doi: 10.1038/s41467-018-05763- 8.
  • Lv M, Zhu X, Chen W, Zhong S, Hu Q et al. (2014). Exosomes mediate drug resistance transfer in MCF-7 breast cancer cells and a probable mechanism is delivery of P-glycoprotein. Tumor Biology 35 (11): 10773-10779. doi: 10.1007/s13277- 014-2377-z.
  • Lv C, Li F, Li X, Tian Y, Zhang Y et al. (2017). MiR-31 promotes mammary stem cell expansion and breast tumorigenesis by suppressing Wnt signaling antagonists. Nature Communications 8 (1): 1036. doi: 10.1038/s41467-017-01059- 5.
  • McGrath E, Logue S, Mnich K, Deegan S, Jäger R et al. (2018). The unfolded protein response in breast cancer. Cancers 10 (10): 344. doi: 10.3390/cancers10100344.
  • Mendes F, Gano L, Grilo H, Cunha S, Fernandes C et al. (2020). Imaging probes for non-invasive tumoral detection and functional monitoring of cancer multidrug resistance. Cancer Drug Resistance 3: 209-224. doi: 10.20517/cdr.2019.86.
  • Milanovic M, Fan DNY, Belenki D, Däbritz JHM, Zhao Z et al. (2017). Senescence-associated reprogramming promotes cancer stemness. Nature 553 (7686): 96-100. doi: 10.1038/ nature25167.
  • Ming J, Ruan S, Wang M, Ye D, Fan N et al. (2015). A novel chemical, STF-083010, reverses tamoxifen-related drug resistance in breast cancer by inhibiting IRE1/XBP1. Oncotarget 6 (38): 40692-40703. doi: 10.18632/oncotarget.5827.
  • Mukerjee G, Huston A, Kabakchiev B, Piquette-Miller M, Van Schaik R et al. (2018). User considerations in assessing pharmacogenomic tests and their clinical support tools. NPJ Genomic Medicine 3: 26. doi: 10.1038/s41525-018-0065-4.
  • Manié E, Popova T, Battistella A, Tarabeux J, Caux-Moncoutier V et al. (2015). Genomic hallmarks of homologous recombination deficiency in invasive breast carcinomas. International Journal of Cancer 138 (4): 891-900. doi: 10.1002/ijc.29829.
  • Najjary S, Mohammadzadeh R, Mokhtarzadeh A, Mohammadi A, Kojabad AB et al. (2020). Role of miR-21 as an authentic oncogene in mediating drug resistance in breast cancer. Gene 738: 144453. doi: 10.1016/j.gene.2020.144453.
  • O’Brien NA, McDermott M, Conklin D, Luo T, Ayala R et al. (2020). Targeting activated PI3K/mTOR signaling overcomes acquired resistance to CDK4/6-based therapies in preclinical models of hormone receptor-positive breast cancer. Breast Cancer Research 22 (1): 89. doi: 10.1186/s13058-020-01320-8.
  • Ortega MA, Fraile-Martínez O, Asúnsolo Á, Buján J, GarcíaHonduvilla N et al. (2020). Signal transduction pathways in breast cancer: the important role of PI3K/Akt/mTOR. Journal of Oncology 2020: 9258396. doi: 10.1155/2020/9258396.
  • Osaki M, Okada F (2019). Exosomes and their role in cancer progression. Yonago Acta Medica 62 (2): 182-190. doi: 10.33160/yam.2019.06.002.
  • Ponnusamy L, Mahalingaiah PKS, Chang YW, Singh KP (2019). Role of cellular reprogramming and epigenetic dysregulation in acquired chemoresistance in breast cancer. Cancer Drug Resistance 1. doi: 10.20517/cdr.2018.11.
  • Qu Y, Dou B, Tan H, Feng Y, Wang N et al. (2019). Tumor microenvironment-driven non-cell-autonomous resistance to antineoplastic treatment. Molecular Cancer 18 (1): 69. doi: 10.1186/s12943-019-0992-4.
  • Risom T, Langer EM, Chapman MP, Rantala J, Fields AJ et al. (2018). Differentiation-state plasticity is a targetable resistance mechanism in basal-like breast cancer. Nature Communications 9 (1): 3815. doi: 10.1038/s41467-018- 05729-w.
  • Rodríguez-González FG, Sieuwerts AM, Smid M, Look MP, Meijervan Gelder ME et al. (2010). MicroRNA-30c expression level is an independent predictor of clinical benefit of endocrine therapy in advanced estrogen receptor positive breast cancer. Breast Cancer Research and Treatment 127 (1): 43-51. doi: 10.1007/s10549-010-0940-x.
  • Salaroglio IC, Panada E, Moiso E, Buondonno I, Provero P et al. (2017). PERK induces resistance to cell death elicited by endoplasmic reticulum stress and chemotherapy. Molecular Cancer 16 (1): 91. doi: 10.1186/s12943-017-0657-0.
  • Sancho-Garnier H, Colonna M (2019). Épidémiologie des cancers du sein. La Presse Médicale 48 (10): 1076-1084. doi: 10.1016/j. lpm.2019.09.022.
  • Sanoff HK, Deal AM, Krishnamurthy J, Torrice C, Dillon P et al. (2014). Effect of cytotoxic chemotherapy on markers of molecular age in patients with breast cancer. JNCI: Journal of the National Cancer Institute 106 (4): 106. doi: 10.1093/jnci/ dju057.
  • Salaroglio IC, Gazzano E, Abdullrahman A, Mungo E, Castella B et al. (2018). Increasing intratumor C/EBP-β LIP and nitric oxide levels overcome resistance to doxorubicin in triple negative breast cancer. Journal of Experimental & Clinical Cancer Research 37 (1): 286. doi: 10.1186/s13046-018-0967-0.
  • Shenouda SK, Alahari SK (2009). MicroRNA function in cancer: oncogene or a tumor suppressor? Cancer and Metastasis Reviews 28 (3-4): 369-378. doi: 10.1007/s10555-009-9188-5.
  • Shirjang S, Mansoori B, Asghari S, Duijf PHG, Mohammadi A et al. (2019). MicroRNAs in cancer cell death pathways: apoptosis and necroptosis. Free Radical Biology and Medicine 139: 1-15. doi: 10.1016/j.freeradbiomed.2019.05.017.
  • Su Z, Yang Z, Xu Y, Chen Y, Yu Q (2015). MicroRNAs in apoptosis, autophagy and necroptosis. Oncotarget 6 (11): 8474-8490. doi: 10.18632/oncotarget.3523.
  • Toyoda Y, Takada T, Suzuki H. (2019). Inhibitors of human ABCG2: from technical background to recent updates with clinical implications. Frontiers in Pharmacology 10: 208. doi: 10.3389/ fphar.2019.00208.
  • Vasiliou V, Vasiliou K, Nebert DW (2008). Human ATP-binding cassette (ABC) transporter family. Human Genomics 3 (3): 281. doi: 10.1186/1479-7364-3-3-281.
  • Vilquin P, Donini CF, Villedieu M, Grisard E, Corbo L et al. (2015). MicroRNA-125b upregulation confers aromatase inhibitor resistance and is a novel marker of poor prognosis in breast cancer. Breast Cancer Research 17 (1): 13. doi: 10.1186/ s13058-015-0515-1.
  • Wang X, Zhang H, Chen X (2019). Drug resistance and combating drug resistance in cancer. Cancer Drug Resistance 2: 141-160. doi: 10.20517/cdr.2019.10.
  • Wang W, Lim KG, Feng M, Bao Y, Lee PL et al. (2018). KDM6B counteracts EZH2-mediated suppression of IGFBP5 to confer resistance to PI3K/AKT inhibitor treatment in breast cancer. Molecular Cancer Therapeutics 17 (9): 1973-1983. doi: 10.1158/1535-7163.mct-17-0802.
  • Wilkens S (2015). Structure and mechanism of ABC transporters. F1000Prime Reports 7: 14. doi: 10.12703/p7-14.
  • Wu J, Chen S, Liu H, Zhang Z, Ni Z et al. (2018). Tunicamycin specifically aggravates ER stress and overcomes chemoresistance in multidrug-resistant gastric cancer cells by inhibiting N-glycosylation. Journal of Experimental & Clinical Cancer Research 37 (1): 272. doi: 10.1186/s13046-018-0935-8.
  • Wu Y, Shi W, Tang T, Wang Y, Yin X et al. (2019). miR-29a contributes to breast cancer cells epithelial-mesenchymal transition, migration, and invasion via down-regulating histone H4K20 trimethylation through directly targeting SUV420H2. Cell Death & Disease 10 (3): 176. doi: 10.1038/s41419-019-1437-0.
  • Wu MY, Fu J, Xiao X, Wu J, Wu RC (2014). MiR-34a regulates therapy resistance by targeting HDAC1 and HDAC7 in breast cancer. Cancer Letters 354 (2): 311-319. doi: 10.1016/j. canlet.2014.08.031.
  • Xie J, Tao ZH, Zhao J, Li T, Wu ZH et al. (2016). Glucose regulated protein 78 (GRP78) inhibits apoptosis and attentinutes chemosensitivity of gemcitabine in breast cancer cell via AKT/mitochondrial apoptotic pathway. Biochemical and Biophysical Research Communications 474 (3): 612-619. doi: 10.1016/j.bbrc.2016.03.002.
  • Yang H, Geng YH, Wang P, Yang H, Zhou YTet al. (2020). Extracellular ATP promotes breast cancer invasion and chemoresistance via SOX9 signaling. Oncogene 39 (35): 5795-5810. doi: 10.1038/ s41388-020-01402-z.
  • Yang M, Li H, Li Y, Ruan Y, Quan C (2018). Identification of genes and pathways associated with MDR in MCF-7/MDR breast cancer cells by RNA-seq analysis. Molecular Medicine Reports 17 (5): 6211-6226. doi: 10.3892/mmr.2018.8704.
  • Yamaguchi H, Chang SS, Hsu JL, Hung MC (2014). Signaling cross-talk in the resistance to HER family receptor targeted therapy. Oncogene 33 (9): 1073-1081. doi: 10.1038/ onc.2013.74.
  • Yuan Y, Cai T, Xia X, Zhang R, Chiba P et al. (2016). Nanoparticle delivery of anticancer drugs overcomes multidrug resistance in breast cancer. Drug Delivery 23 (9): 3350-3357. doi: 10.1080/10717544.2016.1178825.
  • Zedain A, Badrway H, Refaat A, Razik DIAE, Mahran A et al. (2020). Using miR-125b in the prediction of aromatase inhibitors resistance in metastatic breast cancer. Journal of Cancer and Tumor International 1: 9. doi: 10.9734/jcti/2020/v10i330127.
  • Zhang LN, Xia YZ, Zhang C, Zhang H, Luo JG et al. (2020). Vielanin K enhances doxorubicin-induced apoptosis via activation of IRE1α- TRAF2 - JNK pathway and increases mitochondrial Ca2 + influx in MCF-7 and MCF-7/MDR cells. Phytomedicine 78:153329. doi: 10.1016/j.phymed.2020.153329.
  • Zhang X, Cook KL, Warri A, Cruz IM, Rosim M et al. (2017). Lifetime Genistein Intake Increases the Response of Mammary Tumors to Tamoxifen in Rats. Clinical Cancer Research 23 (3): 814-824. doi: 10.1158/1078-0432.CCR-16-1735.
  • Zhang T, Yuan Q, Gu Z, Xue C (2019). Advances of proteomics technologies for multidrug-resistant mechanisms. Future Medicinal Chemistry 11 (19): 2573-2593. doi: 10.4155/fmc2018-0507.
  • Zhao TT, Jin F, Li JG, Xu YY, Dong HT et al. (2018). TRIM32 promotes proliferation and confers chemoresistance to breast cancer cells through activation of the NF-κB pathway. Journal of Cancer 9 (8): 1349-1356. doi:10.7150/jca.22390.
  • Zheng Y, Liu P, Wang N, Wang S, Yang B et al. (2019). Betulinic acid suppresses breast cancer metastasis by targeting GRP78- mediated glycolysis and ER stress apoptotic pathway. Oxidative Medicine and Cellular Longevity 2019: 1-15. doi: 10.1155/2019/8781690.
  • Zhu Y, Xie M, Meng Z, Leung LK, Chan FL et al. (2019). Knockdown of TM9SF4 boosts ER stress to trigger cell death of chemoresistant breast cancer cells. Oncogene 38 (29): 5778- 5791. doi: 10.1038/s41388-019-0846-y
APA Mehdizadehtapeh L, OBAKAN YERLIKAYA P (2021). Endoplasmic reticulum stress and oncomir-associated chemotherapeutic drug resistance mechanisms in breast cancer tumors. , 1 - 16.
Chicago Mehdizadehtapeh Leila,OBAKAN YERLIKAYA PINAR Endoplasmic reticulum stress and oncomir-associated chemotherapeutic drug resistance mechanisms in breast cancer tumors. (2021): 1 - 16.
MLA Mehdizadehtapeh Leila,OBAKAN YERLIKAYA PINAR Endoplasmic reticulum stress and oncomir-associated chemotherapeutic drug resistance mechanisms in breast cancer tumors. , 2021, ss.1 - 16.
AMA Mehdizadehtapeh L,OBAKAN YERLIKAYA P Endoplasmic reticulum stress and oncomir-associated chemotherapeutic drug resistance mechanisms in breast cancer tumors. . 2021; 1 - 16.
Vancouver Mehdizadehtapeh L,OBAKAN YERLIKAYA P Endoplasmic reticulum stress and oncomir-associated chemotherapeutic drug resistance mechanisms in breast cancer tumors. . 2021; 1 - 16.
IEEE Mehdizadehtapeh L,OBAKAN YERLIKAYA P "Endoplasmic reticulum stress and oncomir-associated chemotherapeutic drug resistance mechanisms in breast cancer tumors." , ss.1 - 16, 2021.
ISNAD Mehdizadehtapeh, Leila - OBAKAN YERLIKAYA, PINAR. "Endoplasmic reticulum stress and oncomir-associated chemotherapeutic drug resistance mechanisms in breast cancer tumors". (2021), 1-16.
APA Mehdizadehtapeh L, OBAKAN YERLIKAYA P (2021). Endoplasmic reticulum stress and oncomir-associated chemotherapeutic drug resistance mechanisms in breast cancer tumors. Turkish Journal of Biology, 45(1), 1 - 16.
Chicago Mehdizadehtapeh Leila,OBAKAN YERLIKAYA PINAR Endoplasmic reticulum stress and oncomir-associated chemotherapeutic drug resistance mechanisms in breast cancer tumors. Turkish Journal of Biology 45, no.1 (2021): 1 - 16.
MLA Mehdizadehtapeh Leila,OBAKAN YERLIKAYA PINAR Endoplasmic reticulum stress and oncomir-associated chemotherapeutic drug resistance mechanisms in breast cancer tumors. Turkish Journal of Biology, vol.45, no.1, 2021, ss.1 - 16.
AMA Mehdizadehtapeh L,OBAKAN YERLIKAYA P Endoplasmic reticulum stress and oncomir-associated chemotherapeutic drug resistance mechanisms in breast cancer tumors. Turkish Journal of Biology. 2021; 45(1): 1 - 16.
Vancouver Mehdizadehtapeh L,OBAKAN YERLIKAYA P Endoplasmic reticulum stress and oncomir-associated chemotherapeutic drug resistance mechanisms in breast cancer tumors. Turkish Journal of Biology. 2021; 45(1): 1 - 16.
IEEE Mehdizadehtapeh L,OBAKAN YERLIKAYA P "Endoplasmic reticulum stress and oncomir-associated chemotherapeutic drug resistance mechanisms in breast cancer tumors." Turkish Journal of Biology, 45, ss.1 - 16, 2021.
ISNAD Mehdizadehtapeh, Leila - OBAKAN YERLIKAYA, PINAR. "Endoplasmic reticulum stress and oncomir-associated chemotherapeutic drug resistance mechanisms in breast cancer tumors". Turkish Journal of Biology 45/1 (2021), 1-16.