Yıl: 2021 Cilt: 45 Sayı: 1 Sayfa Aralığı: 104 - 113 Metin Dili: İngilizce İndeks Tarihi: 29-07-2022

Current mutatome of SARS-CoV-2 in Turkey reveals mutations of interest

Öz:
As the underlying pathogen for the COVID-19 pandemic that has affected tens of millions of lives worldwide, SARS-CoV-2 and its mutations are among the most urgent research topics worldwide. Mutations in the virus genome can complicate attempts at accurate testing or developing a working treatment for the disease. Furthermore, because the virus uses its own proteins to replicate its genome, rather than host proteins, mutations in the replication proteins can have cascading effects on the mutation load of the virus genome. Due to the global, rapidly developing nature of the COVID-19 pandemic, local demographics of the virus can be difficult to accurately analyze and track, disproportionate to the importance of such information. Here, we analyzed available, high-quality genome data of SARS-CoV-2 isolates from Turkey and identified their mutations, in comparison to the reference genome, to understand how the local mutatome compares to the global genomes. Our results indicate that viral genomes in Turkey has one of the highest mutation loads and certain mutations are remarkably frequent compared to global genomes. We also made the data on Turkey isolates available on an online database to facilitate further research on SARS-CoV-2 mutations in Turkey.
Anahtar Kelime: COVID-19 genome analysis database coronavirus mutation profiling Turkey SARS-CoV-2

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • Ayub M (2020). Reporting two SARS-CoV-2 strains based on a unique trinucleotide-bloc mutation and their potential pathogenic difference. Preprints. : 10.20944/preprints202004.0337.v1.
  • Chan JF-W, Yuan S, Kok K-H, To KK-W, Chu H et al. (2020). A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster. The Lancet 395: 514-523. doi: 10.1016/ S0140-6736(20)30154-9.
  • Daniloski Z, Jordan TX, Ilmain JK, Guo X, Bhabha G et al. (2020). The Spike D614G mutation increases SARS-CoV-2 infection of multiple human cell types. bioRxiv 2020. doi: 10.1101/2020.06.14.151357.
  • Deng W, Bao L, Liu J, Xiao C, Liu J et al. (2020). Primary exposure to SARS-CoV-2 protects against reinfection in rhesus macaques. Science 369: 818-823. doi: 10.1126/science.abc5343.
  • Elbe S, Buckland‐Merrett G (2017). Data, disease and diplomacy: GISAID’s innovative contribution to global health. Global Challenges 1: 33-46. doi: 10.1002/gch2.1018.
  • Eskier D, Suner A, Karakülah G, Oktay Y (2020a). Mutation density changes in SARS-CoV-2 are related to the pandemic stage but to a lesser extent in the dominant strain with mutations in spike and RdRp. PeerJ – Life & Environment 8: e9703. doi: 10.7717/peerj.9703.
  • Eskier D, Suner A, Oktay Y, Karakülah G (2020b). Mutations of SARS-CoV-2 nsp14 exhibit strong association with increased genome-wide mutation load. bioRxiv 2020. doi: 10.1101/2020.08.12.248732.
  • Eskier D, Karakülah G, Suner A, Oktay Y (2020c). RdRp mutations are associated with SARS-CoV-2 genome evolution. PeerJ – Life & Environment 8: e9587. doi: 10.7717/peerj.9587.
  • Grifoni A, Weiskopf D, Ramirez SI, Mateus J, Dan JM et al. (2020). Targets of T cell responses to SARS-CoV-2 coronavirus in humans with COVID-19 disease and unexposed individuals. Cell 181: 1489-1501. doi: 10.1016/j.cell.2020.05.015.
  • Hachim A, Kavian N, Cohen CA, Chin AWH, Chu DKW et al. (2020). ORF8 and ORF3b antibodies are accurate serological markers of early and late SARS-CoV-2 infection. Nature Immunology 21: 1293-1301. doi: 10.1038/s41590-020-0773-7.
  • Hadfield J, Megill C, Bell SM, Huddleston J, Potter B et al. (2018). Nextstrain: real-time tracking of pathogen evolution. Bioinformatics 34: 4121-4123. doi: 10.1093/bioinformatics/ bty407.
  • Hue S, Beldi-Ferchiou A, Bendib I, Surenaud M, Fourati S et al. (2020). Uncontrolled innate and impaired adaptive immune responses in patients with COVID-19 acute respiratory distress syndrome. American Journal of Respiratory and Critical Care Medicine 202: 1509-1519. doi: 10.1164/rccm.202005-1885OC.
  • Jungreis I, Sealfon R, Kellis M (2020). Sarbecovirus comparative genomics elucidates gene content of SARS-CoV-2 and functional impact of COVID-19 pandemic mutations. bioRxiv 2020. doi: 10.1101/2020.06.02.130955.
  • Katoh K, Misawa K, Kuma K, Miyata T (2002). MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Research 30: 3059-3066. doi: 10.1093/nar/gkf436.
  • Kirchdoerfer RN, Ward AB (2019). Structure of the SARS-CoV nsp12 polymerase bound to nsp7 and nsp8 co-factors. Nature Communications 10: 2342. doi: 10.1038/s41467-019-10280-3.
  • Kochi AN, Tagliari AP, Forleo GB, Fassini GM, Tondo C (2020). Cardiac and arrhythmic complications in patients with COVID-19. Journal of Cardiovascular Electrophysiology 31: 1003-1008. doi: 10.1111/jce.14479.
  • Korber B, Fischer WM, Gnanakaran S, Yoon H, Theiler J et al. (2020). Tracking changes in SARS-CoV-2 spike: evidence that D614G increases infectivity of the COVID-19 virus. Cell 182: 812-827. e19. doi: 10.1016/j.cell.2020.06.043.
  • Lee I-C, Huo T-I, Huang Y-H (2020). Gastrointestinal and liver manifestations in patients with COVID-19. Journal of the Chinese Medical Association 83: 521-523. doi: 10.1097/ JCMA.0000000000000319.
  • Li Y-C, Bai W-Z, Hashikawa T (2020). The neuroinvasive potential of SARS-CoV2 may play a role in the respiratory failure of COVID-19 patients. Journal of Medical Virology 92: 552-555. doi: 10.1002/jmv.25728.
  • MacLean OA, Lytras S, Weaver S, Singer JB, Boni MF et al. (2020). Natural selection in the evolution of SARS-CoV-2 in bats, not humans, created a highly capable human pathogen. bioRxiv 2020. doi: 10.1101/2020.05.28.122366.
  • McBride R, Van Zyl M, Fielding BC (2014). The coronavirus nucleocapsid is a multifunctional protein. Viruses 6: 2991- 3018. doi: 10.3390/v6082991.
  • Pachetti M, Marini B, Benedetti F, Giudici F, Mauro E et al. (2020). Emerging SARS-CoV-2 mutation hot spots include a novel RNA-dependent-RNA polymerase variant. Journal of Translational Medicine 18: 179. doi: 10.1186/s12967-020- 02344-6.
  • Page AJ, Taylor B, Delaney AJ, Soares J, Seemann T et al. (2016). SNPsites: rapid efficient extraction of SNPs from multi-FASTA alignments. Microbial Genomics 2 (4): e000056. doi: 10.1099/ mgen.0.000056.
  • Peng Q, Peng R, Yuan B, Zhao J, Wang M et al. (2020). Structural and biochemical characterization of the nsp12-nsp7-nsp8 core polymerase complex from SARS-CoV-2. Cell Reports 31: 107774. doi: 10.1016/j.celrep.2020.10777
  • Riou J, Althaus CL (2020). Pattern of early human-to-human transmission of Wuhan 2019 novel coronavirus (2019-nCoV), December 2019 to January 2020. Euro Surveillance: Bulletin Europeen Sur Les Maladies Transmissibles = European Communicable Disease Bulletin 25. doi: 10.2807/1560-7917. ES.2020.25.4.2000058.
  • Romano M, Ruggiero A, Squeglia F, Maga G, Berisio R (2020). A structural view of SARS-CoV-2 RNA replication machinery: RNA synthesis, proofreading and final capping. Cells 9. doi: 10.3390/cells9051267.
  • Sagulenko P, Puller V, Neher RA (2018). TreeTime: Maximumlikelihood phylodynamic analysis. Virus Evolution 4. doi: 10.1093/ve/vex042.
  • Simmonds P (2020). Rampant C>U hypermutation in the genomes of SARS-CoV-2 and other coronaviruses – causes and consequences for their short and long evolutionary trajectories. bioRxiv 2020. doi: 10.1101/2020.05.01.072330.
  • Subissi L, Posthuma CC, Collet A, Zevenhoven-Dobbe JC, Gorbalenya AE et al. (2014). One severe acute respiratory syndrome coronavirus protein complex integrates processive RNA polymerase and exonuclease activities. Proceedings of the National Academy of Sciences 111: E3900-E3909. doi: 10.1073/pnas.1323705111.
  • Tillett RL, Sevinsky JR, Hartley PD, Kerwin H, Crawford N et al. (2021). Genomic evidence for reinfection with SARS-CoV-2: a case study. The Lancet Infectious Diseases 21: 52-58. doi: 10.1016/S1473-3099(20)30764-7.
  • Tylor S, Andonov A, Cutts T, Cao J, Grudesky E et al. (2009). The SRrich motif in SARS-CoV nucleocapsid protein is important for virus replication. Canadian Journal of Microbiology 55: 254- 260. doi: 10.1139/w08-139.
  • Wang K, Li M, Hakonarson H (2010). ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Research 38: e164-e164. doi: 10.1093/nar/gkq603.
  • Wong J, Jamaludin SA, Alikhan MF, Chaw L (2020). Asymptomatic transmission of SARS-CoV-2 and implications for mass gatherings. Influenza and Other Respiratory Viruses 14 (5): 596-598. doi: 10.1111/irv.12767.
  • Yin C (2020). Genotyping coronavirus SARS-CoV-2: methods and implications. Genomics 112 (5): 3588-3596. doi: 10.1016/j. ygeno.2020.04.016.
  • Zhu H, Rhee J-W, Cheng P, Waliany S, Chang A et al. (2020). Cardiovascular complications in patients with COVID-19: consequences of viral toxicities and host immune response. Current Cardiology Reports 22: 32. doi: 10.1007/s11886-020- 01292-3.
APA Eskier D, Akalp E, DALAN Ö, Karakulah G, Oktay Y (2021). Current mutatome of SARS-CoV-2 in Turkey reveals mutations of interest. , 104 - 113.
Chicago Eskier Doğa,Akalp Evren,DALAN Özlem,Karakulah Gokhan,Oktay Yavuz Current mutatome of SARS-CoV-2 in Turkey reveals mutations of interest. (2021): 104 - 113.
MLA Eskier Doğa,Akalp Evren,DALAN Özlem,Karakulah Gokhan,Oktay Yavuz Current mutatome of SARS-CoV-2 in Turkey reveals mutations of interest. , 2021, ss.104 - 113.
AMA Eskier D,Akalp E,DALAN Ö,Karakulah G,Oktay Y Current mutatome of SARS-CoV-2 in Turkey reveals mutations of interest. . 2021; 104 - 113.
Vancouver Eskier D,Akalp E,DALAN Ö,Karakulah G,Oktay Y Current mutatome of SARS-CoV-2 in Turkey reveals mutations of interest. . 2021; 104 - 113.
IEEE Eskier D,Akalp E,DALAN Ö,Karakulah G,Oktay Y "Current mutatome of SARS-CoV-2 in Turkey reveals mutations of interest." , ss.104 - 113, 2021.
ISNAD Eskier, Doğa vd. "Current mutatome of SARS-CoV-2 in Turkey reveals mutations of interest". (2021), 104-113.
APA Eskier D, Akalp E, DALAN Ö, Karakulah G, Oktay Y (2021). Current mutatome of SARS-CoV-2 in Turkey reveals mutations of interest. Turkish Journal of Biology, 45(1), 104 - 113.
Chicago Eskier Doğa,Akalp Evren,DALAN Özlem,Karakulah Gokhan,Oktay Yavuz Current mutatome of SARS-CoV-2 in Turkey reveals mutations of interest. Turkish Journal of Biology 45, no.1 (2021): 104 - 113.
MLA Eskier Doğa,Akalp Evren,DALAN Özlem,Karakulah Gokhan,Oktay Yavuz Current mutatome of SARS-CoV-2 in Turkey reveals mutations of interest. Turkish Journal of Biology, vol.45, no.1, 2021, ss.104 - 113.
AMA Eskier D,Akalp E,DALAN Ö,Karakulah G,Oktay Y Current mutatome of SARS-CoV-2 in Turkey reveals mutations of interest. Turkish Journal of Biology. 2021; 45(1): 104 - 113.
Vancouver Eskier D,Akalp E,DALAN Ö,Karakulah G,Oktay Y Current mutatome of SARS-CoV-2 in Turkey reveals mutations of interest. Turkish Journal of Biology. 2021; 45(1): 104 - 113.
IEEE Eskier D,Akalp E,DALAN Ö,Karakulah G,Oktay Y "Current mutatome of SARS-CoV-2 in Turkey reveals mutations of interest." Turkish Journal of Biology, 45, ss.104 - 113, 2021.
ISNAD Eskier, Doğa vd. "Current mutatome of SARS-CoV-2 in Turkey reveals mutations of interest". Turkish Journal of Biology 45/1 (2021), 104-113.