Yıl: 2021 Cilt: 45 Sayı: 1 Sayfa Aralığı: 65 - 78 Metin Dili: İngilizce İndeks Tarihi: 29-07-2022

Detection of grain yield QTLs in the durum population Lahn/Chaml tested in contrasting environments

Öz:
Durum wheat (Triticum turgidum L. var durum) is tetraploid wheat (AABB); it is the main source of semolina and other pasta products. Grain yield in wheat is quantitatively inherited and influenced by the environment. The genetic map construction constitutes the essential step in identifying quantitative trait loci (QTLs) linked to complex traits, such as grain yield. The study aimed to construct a genetic linkage map of two parents that are widely grown durum cultivars (Lahn and Chaml) in the Mediterranean basin, which is characterized by varying climate changes. The genetic linkage map of Lahn/Chaml population consisted of 112 recombinant inbred lines (RILs) and was used to determine QTLs linked to the grain yield in 11 contrasting environments (favorable, cold, dry, and hot). Simple sequence repeat (SSR) molecular markers were used to construct an anchor map, which was later enriched with single nucleotide polymorphisms (SNPs). The map was constructed with 247 SSRs and enriched with 1425 SNPs. The map covered 6122.22 cM. One hundred and twenty-six QTLs were detected on different chromosomes. Chromosomes 2A and 4B harbored the most significant grain yield QTLs. Furthermore, by comparison with several wheat mapping populations, all the A and B chromosomes of Lahn/Cham 1 QTLs contributed to grain yield. The results showed that the detected QTLs can be used as a potential candidate for marker-assisted selection in durum breeding programs.
Anahtar Kelime: Molecular markers grain yield QTL SNP genetic linkage map

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • Abiola O, 2003, NAT REV GENET, V4, P911, DOI 10.1038/nrg1206
  • Akbari M, 2006, THEOR APPL GENET, V113, P1409, DOI 10.1007/s00122-006-0365-4
  • Almeida GD, 2013, THEOR APPL GENET, V126, P583, DOI 10.1007/s00122-012-2003-7
  • Alsaleh A, 2015, PLANT MOL BIOL REP, V33, P209, DOI 10.1007/s11105-014-0749-6
  • Bennett D, 2012, THEOR APPL GENET, V125, P255, DOI 10.1007/s00122-012-1831-9
  • Blanco A, 1998, THEOR APPL GENET, V97, P721, DOI 10.1007/s001220050948
  • Blanco A, 1996, PLANT BREEDING, V115, P310, DOI 10.1111/j.1439-0523.1996.tb00925.x
  • Bogard M, 2011, J EXP BOT, V62, P3621, DOI 10.1093/jxb/err061
  • Bort J, 2014, J AGR SCI-CAMBRIDGE, V152, P408, DOI 10.1017/S0021859613000269
  • Dura S, 2013, CROP PASTURE SCI, V64, P957, DOI 10.1071/CP13287
  • Edwards D, 2012, PLANT BIOTECHNOL J, V10, P703, DOI 10.1111/j.1467-7652.2012.00717.x
  • El Hassouni K, 2019, AGRONOMY-BASEL, V9, DOI 10.3390/agronomy9080414
  • Elouafi I, 2004, THEOR APPL GENET, V108, P401, DOI 10.1007/s00122-003-1440-8
  • Farre A, 2016, BMC PLANT BIOL, V16, DOI 10.1186/s12870-016-0849-6
  • FEDERER W. T., 1956, Hawaiian Planters' Record, V55, P191
  • Habash DZ, 2009, J EXP BOT, V60, P2805, DOI 10.1093/jxb/erp211
  • Habash DZ, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0108431
  • Haile JK, 2012, MOL BREEDING, V30, P1479, DOI 10.1007/s11032-012-9734-7
  • Heidari B, 2011, GENOME, V54, P517, DOI [10.1139/g11-017, 10.1139/G11-017]
  • Kato K, 2000, THEOR APPL GENET, V101, P1114, DOI 10.1007/s001220051587
  • Kehel Z, 2010, AGRON J, V102, P1542, DOI 10.2134/agronj2010.0175
  • Kirigwi FM, 2007, MOL BREEDING, V20, P401, DOI 10.1007/s11032-007-9100-3
  • Korzun V, 1999, THEOR APPL GENET, V98, P1202, DOI 10.1007/s001220051185
  • Kosambi DD, 1943, ANN EUGENIC, V12, P172, DOI 10.1111/j.1469-1809.1943.tb02321.x
  • Kuchel H, 2007, THEOR APPL GENET, V115, P1029, DOI 10.1007/s00122-007-0629-7
  • Li HH, 2007, GENETICS, V175, P361, DOI 10.1534/genetics.106.066811
  • Li SS, 2007, MOL BREEDING, V20, P167, DOI 10.1007/s11032-007-9080-3
  • Li ZK, 2014, GENET MOL RES, V13, P1412, DOI 10.4238/2014.February.28.14
  • Maccaferri M, 2008, GENETICS, V178, P489, DOI 10.1534/genetics.107.077297
  • Maccaferri M, 2015, PLANT BIOTECHNOL J, V13, P648, DOI 10.1111/pbi.12288
  • Maccaferri M, 2011, J EXP BOT, V62, P409, DOI 10.1093/jxb/erq287
  • Marza F, 2006, THEOR APPL GENET, V112, P688, DOI 10.1007/s00122-005-0172-3
  • McIntyre CL, 2010, THEOR APPL GENET, V120, P527, DOI 10.1007/s00122-009-1173-4
  • Nachit M., 2004, CROP SCI, V32, P203 .
  • Nachit MM, 2001, THEOR APPL GENET, V102, P177, DOI 10.1007/s001220051633
  • Nachit MM, 2016, APPL MATH OMICS ASSE, P259 .
  • Nagel M, 2014, BIOL PLANTARUM, V58, P681, DOI 10.1007/s10535-014-0436-3
  • Pozniak CJ, 2007, THEOR APPL GENET, V114, P525, DOI 10.1007/s00122-006-0453-5
  • Quarrie SA, 2005, THEOR APPL GENET, V110, P865, DOI 10.1007/s00122-004-1902-7
  • Ribaut JM, 1997, THEOR APPL GENET, V94, P887, DOI 10.1007/s001220050492
  • Roder MS, 1998, GENETICS, V149, P2007 .
  • Somers DJ, 2004, THEOR APPL GENET, V109, P1105, DOI 10.1007/s00122-004-1740-7
  • Soriano JM, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0178290
  • Sourdille P, 2003, THEOR APPL GENET, V106, P530, DOI 10.1007/s00122-002-1044-8
  • Su QN, 2018, FRONT PLANT SCI, V9, DOI 10.3389/fpls.2018.01484
  • Tixier MH, 1998, THEOR APPL GENET, V97, P1076, DOI 10.1007/s001220050994
  • Tura H, 2020, THEOR APPL GENET, V133, P239, DOI 10.1007/s00122-019-03454-6
  • van Poecke RMP, 2013, PLANT BIOTECHNOL J, V11, P809, DOI 10.1111/pbi.12072
  • Varshney RK, 2000, THEOR APPL GENET, V100, P1290, DOI 10.1007/s001220051437
  • Wang JQ, 2018, NEURAL COMPUT APPL, V30, P1529, DOI 10.1007/s00521-016-2747-0
  • Xu DA, 2019, THEOR APPL GENET, V132, P3191, DOI 10.1007/s00122-019-03418-w
  • Zaim M, 2020, FRONT GENET, V11, DOI 10.3389/fgene.2020.00316
  • Zeng QD, 2019, CROP J, V7, P176, DOI 10.1016/j.cj.2018.12.002
  • Zhang DL, 2012, PLANTA, V236, P1507, DOI 10.1007/s00425-012-1708-9
  • Zhang H, 2016, CROP J, V4, P220, DOI 10.1016/j.cj.2016.01.007
  • Zhang L, 2012, BMC GENET, V13, DOI 10.1186/1471-2156-13-69
  • Zhang W, 2008, THEOR APPL GENET, V117, P1361, DOI 10.1007/s00122-008-0869-1
APA FAROUK I, ALSALEH A, MOTOWAJ J, GABOUN F, BELKADİ B, FILALI-MALTOUF A, KEHEL Z, ELOUAFİ I, NSARELLAH N, NACHİT M (2021). Detection of grain yield QTLs in the durum population Lahn/Chaml tested in contrasting environments. , 65 - 78.
Chicago FAROUK Issame,ALSALEH Ahmad,MOTOWAJ Jihan,GABOUN Fatima,BELKADİ Bouchra,FILALI-MALTOUF Abdelkarim,KEHEL Zakaria,ELOUAFİ Ismahane,NSARELLAH Nasserelhaq,NACHİT M. Miloudi Detection of grain yield QTLs in the durum population Lahn/Chaml tested in contrasting environments. (2021): 65 - 78.
MLA FAROUK Issame,ALSALEH Ahmad,MOTOWAJ Jihan,GABOUN Fatima,BELKADİ Bouchra,FILALI-MALTOUF Abdelkarim,KEHEL Zakaria,ELOUAFİ Ismahane,NSARELLAH Nasserelhaq,NACHİT M. Miloudi Detection of grain yield QTLs in the durum population Lahn/Chaml tested in contrasting environments. , 2021, ss.65 - 78.
AMA FAROUK I,ALSALEH A,MOTOWAJ J,GABOUN F,BELKADİ B,FILALI-MALTOUF A,KEHEL Z,ELOUAFİ I,NSARELLAH N,NACHİT M Detection of grain yield QTLs in the durum population Lahn/Chaml tested in contrasting environments. . 2021; 65 - 78.
Vancouver FAROUK I,ALSALEH A,MOTOWAJ J,GABOUN F,BELKADİ B,FILALI-MALTOUF A,KEHEL Z,ELOUAFİ I,NSARELLAH N,NACHİT M Detection of grain yield QTLs in the durum population Lahn/Chaml tested in contrasting environments. . 2021; 65 - 78.
IEEE FAROUK I,ALSALEH A,MOTOWAJ J,GABOUN F,BELKADİ B,FILALI-MALTOUF A,KEHEL Z,ELOUAFİ I,NSARELLAH N,NACHİT M "Detection of grain yield QTLs in the durum population Lahn/Chaml tested in contrasting environments." , ss.65 - 78, 2021.
ISNAD FAROUK, Issame vd. "Detection of grain yield QTLs in the durum population Lahn/Chaml tested in contrasting environments". (2021), 65-78.
APA FAROUK I, ALSALEH A, MOTOWAJ J, GABOUN F, BELKADİ B, FILALI-MALTOUF A, KEHEL Z, ELOUAFİ I, NSARELLAH N, NACHİT M (2021). Detection of grain yield QTLs in the durum population Lahn/Chaml tested in contrasting environments. Turkish Journal of Biology, 45(1), 65 - 78.
Chicago FAROUK Issame,ALSALEH Ahmad,MOTOWAJ Jihan,GABOUN Fatima,BELKADİ Bouchra,FILALI-MALTOUF Abdelkarim,KEHEL Zakaria,ELOUAFİ Ismahane,NSARELLAH Nasserelhaq,NACHİT M. Miloudi Detection of grain yield QTLs in the durum population Lahn/Chaml tested in contrasting environments. Turkish Journal of Biology 45, no.1 (2021): 65 - 78.
MLA FAROUK Issame,ALSALEH Ahmad,MOTOWAJ Jihan,GABOUN Fatima,BELKADİ Bouchra,FILALI-MALTOUF Abdelkarim,KEHEL Zakaria,ELOUAFİ Ismahane,NSARELLAH Nasserelhaq,NACHİT M. Miloudi Detection of grain yield QTLs in the durum population Lahn/Chaml tested in contrasting environments. Turkish Journal of Biology, vol.45, no.1, 2021, ss.65 - 78.
AMA FAROUK I,ALSALEH A,MOTOWAJ J,GABOUN F,BELKADİ B,FILALI-MALTOUF A,KEHEL Z,ELOUAFİ I,NSARELLAH N,NACHİT M Detection of grain yield QTLs in the durum population Lahn/Chaml tested in contrasting environments. Turkish Journal of Biology. 2021; 45(1): 65 - 78.
Vancouver FAROUK I,ALSALEH A,MOTOWAJ J,GABOUN F,BELKADİ B,FILALI-MALTOUF A,KEHEL Z,ELOUAFİ I,NSARELLAH N,NACHİT M Detection of grain yield QTLs in the durum population Lahn/Chaml tested in contrasting environments. Turkish Journal of Biology. 2021; 45(1): 65 - 78.
IEEE FAROUK I,ALSALEH A,MOTOWAJ J,GABOUN F,BELKADİ B,FILALI-MALTOUF A,KEHEL Z,ELOUAFİ I,NSARELLAH N,NACHİT M "Detection of grain yield QTLs in the durum population Lahn/Chaml tested in contrasting environments." Turkish Journal of Biology, 45, ss.65 - 78, 2021.
ISNAD FAROUK, Issame vd. "Detection of grain yield QTLs in the durum population Lahn/Chaml tested in contrasting environments". Turkish Journal of Biology 45/1 (2021), 65-78.