Yıl: 2020 Cilt: 45 Sayı: 1 Sayfa Aralığı: 1 - 10 Metin Dili: İngilizce DOI: 10.1515/tjb-2017-0299 İndeks Tarihi: 02-10-2021

Establishing and using referenceintervals

Öz:
Reference intervals (RIs) and clinical decision limits (CDLs) are fundamental tools used by healthcare and laboratory professionals to interpret patient labora-tory test results. The traditional method for establishing RIs, known as the direct approach, is based on collecting samples from members of a preselected reference popula-tion, making the measurements and then determining the intervals. For challenging groups such as pediatric and geriatric age groups, indirect methods are appointed for the derivation of RIs in the EP28-A3c guideline. However, there has been an increasing demand to use the indirect methods of deriving RIs by the use of routine laboratory data stored in the laboratory information system. Interna-tional Federation of Clinical Chemistry (IFCC), Committee on Reference Intervals and Decision Limits (C-RIDL) is cur-rently working on the study for the comparison of the con-ventional (direct) and alternative (indirect) approaches for the determination of reference intervals. As a mat-ter of fact that, the process of developing RIs is often beyond the capabilities of an individual laboratory due to the complex, expensive and time-consuming process to develop them. Therefore, a laboratory can alternatively transfer and verify RIs established by an external source (i.e. manufacturers’ package inserts, publications). IFCC, C-RIDL has focused primarily on RIs and has performed multicenter studies to obtain common RIs in recent years. However, as the broader responsibility of the Committee, from its name, includes “decision limits”, the C-RIDL also emphasizes the importance of the correct use of both RIs and CDLs and to encourage laboratories to specify the appropriate information to clinicians as needed.
Anahtar Kelime:

Referans aralıklarının oluşturulması ve kullanılması

Öz:
Referans aralıkları (RI) ve klinik karar sınırları (CDL),sağlık ve laboratuvar profesyonelleri tarafından hastalaboratuvar test sonuçlarını yorumlamak için kullanı- lan temel araçlardır. Doğrudan yaklaşım olarak bilinenRI’lerin oluşturulmasına yönelik geleneksel yöntem,önceden seçilmiş bir referans popülasyonunun üyele- rinden örneklerin toplanması, ölçümlerin yapılması vedaha sonra aralıkların belirlenmesine dayanmaktadır.Pediatrik ve geriatrik yaş grupları gibi zorlu gruplar için,EP28-A3c kılavuzunda RI’nin türetilmesi için dolaylıyöntemler atanır. Bununla birlikte, laboratuvar bilgisisteminde depolanan rutin laboratuvar verilerinin kul- lanılmasıyla UR’nin türetilmesi için dolaylı yöntemlerinkullanılması yönünde artan bir talep vardır. UluslararasıKlinik Kimya Federasyonu (IFCC), Referans Aralıkları veKarar Sınırları Komitesi (C-RIDL) şu anda referans ara- lıklarının belirlenmesi için geleneksel (doğrudan) vealternatif (dolaylı) yaklaşımların karşılaştırılması içinçalışma üzerinde çalışmaktadır. Nitekim, RI geliştirmesüreci genellikle bunları geliştirmek için karmaşık,pahalı ve zaman alıcı bir süreç nedeniyle bireysel birlaboratuvarın yeteneklerinin ötesindedir. Bu nedenle,bir laboratuvar alternatif olarak harici bir kaynak (yaniüreticilerin paket ekleri, yayınları) tarafından kurulanRI’leri aktarabilir ve doğrulayabilir. IFCC, C-RIDL önce- likle RI’lere odaklanmıştır ve son yıllarda ortak RI eldeetmek için çok merkezli çalışmalar yapmıştır. Bununlabirlikte, komitenin daha geniş sorumluluğu adına “kararsınırları” içerdiğinden, C-RIDL aynı zamanda hemRI’lerin, hem de CDL’lerin doğru kullanımının öneminivurgulamakta ve laboratuvarları gerektiğinde klinisyen- lere uygun bilgileri belirtmeye teşvik etmek için teşviketmektedir.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • 1. Ozarda Y. Reference intervals: current status, recent developments and future considerations. Biochem Med 2016;26:5–16.
  • 2. Gräsbeck R, Fellman J. Normal values and statistics. Scand J Clin Lab Invest 1968;21:193–5.
  • 3. Gräsbeck R, Saris NE. Establishment and use of normal values. Scand J Clin Lab Invest 1969;10(Suppl 1):62–3.
  • 4. Gräsbeck R. Reference values (formerly called normal values). Chronobiologia 1977;4:59–61.
  • 5. Solberg HE. International Federation of Clinical Chemistry. Scientific committee, Clinical Section. Expert Panel on Theory of Reference Values and International Committee for Standardization in Haematology Standing Committee on Reference Values. Approved recommendation (1986) on the theory of reference values. Part 1. The concept of reference values. Clin Chim Acta 1987;165:111–8.
  • 6. Petit Clerc C, Solberg HE. International Federation of Clinical Chemistry (IFCC). Approved recommendation on the theory of reference values. Part 2. Selection of individual for the production of reference value. Clin Chim Acta 1987;170:S1–12.
  • 7. Solberg HE, Petit Clerc C. International Federation of Clinical Chemistry (IFCC). Approved recommendation on the theory of reference values. Part 3. Preparation of individuals and collection of the specimens for the production of reference values. Clin Chim Acta 1988;177:S3–11.
  • 8. Solberg HE, Stamm D. International Federation of Clinical Chemistry (IFCC). Approved recommendation on the theory of reference values. Part 4. Control of analytical variation in the production, transfer and application of reference values. Clin Chim Acta 1991;202:S5–11.
  • 9. Solberg HE. International Federation of Clinical Chemistry (IFCC). Approved recommendation on the theory of reference values. Part 5. Statistical treatment of collected reference values. Clin Chim Acta 1987;170:S13–32.
  • 10. Dybkaer R, Solberg HE. International Federation of Clinical Chemistry (IFCC). Approved recommendation on the theory of reference values. Part 6. Presentation of observed values related to reference values. Clin Chim Acta 1987;170:S33–42.
  • 11. Directive 98/79/EC of European Parliament and the Council of 27 October 1998 on in vitro diagnostic medical devices. Offical J Eur Commun 7 December 1998; L331/1-L331/37.
  • 12. International Organization for Standardization. Medical laboratories – requirements for quality and competence [cited 2018 Jun 9]. ISO 15189:2012. Available from https://www.iso.org/ standard/56115.html.
  • 13. CLSI. Defining, establishing, and verifying reference intervals in the clinical laboratory; Approved Guideline. 3rd ed. CLSI EP28- A3. Wayne, Pennsylvania: Clinical and Laboratory Standards Institute; 2010.
  • 14. Jones GR, Haeckel R, Loh TP, Sikaris K, Streichert T, Katayev A, et al. Indirect methods for reference interval determination – review and recommendations. Clin Chem Lab Med 2019;57:20–9.
  • 15. Ozarda Y, Ichihara K, Barth JH, Klee G. Committee on Reference Intervals and Decision Limits (C-RIDL), International Federation of Clinical Chemistry. Protocol and standard operating procedures for common use in worldwide multicenter study on reference values. Clin Chem Lab Med 2013;51:1027–40.
  • 16. Ceriotti F. Common reference intervals the IFCC position. Clin Biochem 2009;42:297.
  • 17. Ceriotti F. Henny J, Queraltó J, Ziyu S, Özarda Y, Chen B, et al. Common reference intervals for aspartate aminotransferase (AST), alanine aminotransferase (ALT) and γ-glutamyl transferase (GGT) in serum: results from an IFCC multicenter study. Clin Chem Lab Med 2010;48:1593–601.
  • 18. Ichihara K, Ozarda Y, Barth JH, Klee G, Qiu L, Erasmus R, et al. A global multicenter study on reference values: 1. Assessment of methods for derivation and comparison of reference intervals. Clin Chim Acta 2017;467:70–82.
  • 19. Ozarda Y, Sikaris K, Streichert T, Macri J, IFCC Committee on Reference intervals and Decision Limits (C-RIDL). Distinguishing reference intervals and clinical decision limits – a review by the IFCC Committee on Reference Intervals and Decision Limits. Crit Rev Clin Lab Sci 2018;55:420–31.
  • 20. Tate JR, Tina Y, Jones GR. Transference and validation of reference intervals. Clin Chem 2015;8:1012–5.
  • 21. Ozarda Y, Higgins V, Adeli K. Verification of reference intervals in routine clinical laboratories: practical challenges and recommendations. Chem Lab Med 2018;57:30–7.
  • 22. Plebani M, Sciacovelli L, Aita A, Chiozza ML. Harmonization of pre-analytical quality indicators. Biochem Med (Zagreb) 2014;24:105–13.
  • 23. Jones G, Barker A. Reference intervals. Clin Biochem Rev 2008;29:S93–7.
  • 24. Box GEP, Cox DR. An analysis of transformations. JR Stat Soc 1964;B26:211–52.
  • 25. Ichihara K, Boyd J. An appraisal of statistical procedures used in derivation of reference intervals. Clin Chem Lab Med 2010;48:1537–51.
  • 26. Dixon WJ. Prossesing data for outliers. Biometrics 1953;9: 74–89.
  • 27. Tukey JW. Exploratory data analysis. Reading, MA, USA: Addison-Wesley, 1977:688.
  • 28. Klee GG, Ichihara K, Ozarda Y, Baumann NA, Straseski J, Bryant SC, et al. Reference intervals: comparison of calculation methods and evaluation of procedures for merging reference measurements from two US medical centers. Am J Clin Pathol 2018;150:545–54.
  • 29. Harris EK, Boyd JC. On dividing reference data into subgroups to produce separate reference ranges. Clin Chem 1990;36:265–70.
  • 30. Lahti A, Hyltoft Peterson P, Boyd JC. Impact of subgroup prevalances on partitioning Gaussian distributed reference values. Clin Chem 2002;48:1987–99.
  • 31. Horn PS, Pesce AJ, Copeland BE. A robust approach to reference interval estimation and evaluation. Clin Chem 1998;44:622–31.
  • 32. Reed AH, Henry RJ, Manson WB. Influence of statistical method used on the resulting estimate on normal range. Clin Chem 1971;17:275–84.
  • 33. Efron B. The jacknife, the bootstrap, and other resampling plans. Philadelphia, PA: CBMS-NSF regional conference series in applied mathematics, 1982:92.
  • 34. Solberg HE. Using a hospitalized population to establish reference intervals: pros and cons. Clin Chem 1994;40:2205–6.
  • 35. Fleming JK, Katayev A. Changing the paradigm of laboratory quality control through implementation of real-time test results monitoring: for patients by patients. Clin Biochem 2015;48:508–13.
  • 36. De Grande LA, Goossens K, Van Uytfanghe K, Stöckl D, Thienpont LM. The Empower project – a new way of assessing and monitoring test comparability and stability. Clin Chem Lab Med 2015;53:1197–204.
  • 37. Jones GR. Validating common reference intervals in routine laboratories. Clin Chim Acta 2014;432:119–21.
  • 38. Cembrowski GS, Tran DV, Higgins TN. The use of serial patient blood gas, electrolyte and glucose results to derive biologic variation: a new tool to assess the acceptability of intensive care unit testing. Clin Chem Lab Med 2010;48:1447–54.
  • 39. Loh TP, Ranieri E, Metz MP. Derivation of pediatric within-individual biological variation by indirect sampling method: an LMS approach. Am J Clin Pathol 2014;142:657–63.
  • 40. Loh TP, Metz MP. Indirect estimation of pediatric between-individual biological variation data for 22 common serum biochemistries. Am J Clin Pathol 2015;143:683–93.
  • 41. Arzideh F, Wosniok W, Gurr E, Hinsch W, Schumann G, Weinstock N, et al. A plea for intra-laboratory reference limits. Part 2. A bimodal retrospective concept for determining reference limits from intra-laboratory databases demonstrated by catalytic activity concentrations of enzymes. Clin Chem Lab Med 2007;45:1043–57.
  • 42. Bhattacharya CG. A simple method of resolution of a distribution into Gaussian components. J Biometric Soc 1967;23:115–35.
  • 43. Hoffmann RG. Statistics in the practice of medicine. J Am Med Assoc 1963;185:864–73.
  • 44. Katayev A, Balciza C, Seccombe DW. Establishing reference intervals for clinical laboratory results. Is there a better way? Am J Clin Pathol 2010;133:180–6.
  • 45. Katayev A, Fleming JK, Luo D, Fisher AH, Sharp TM. Reference intervals data mining no longer a probability paper method. Am J Clin Pathol 2015;143:134–42.
  • 46. Grindler ME. Calculation of normal ranges by methods used for resolution of overlapping Gaussian distributions. Clin Chem 1970;16:24–8.
  • 47. Barth JH. Reference ranges still need further clarity. Ann Clin Biochem 2009;46:1–2.
  • 48. Ceriotti F, Hinzmann R, Panteghini M. Reference intervals: the way forward. Ann Clin Biochem 2009;46:8–17.
  • 49. Adeli K, Higgins V, Trajcevski K, White-Al Habeeb N. The canadian laboratory initiative on pediatric reference intervals: a CALIPER white paper. Crit Rev Clin Lab Sci 2017;54:358–413.
  • 50. CLSI document EP09-A3. Method procedure comparison and bias estimation using patient samples, approved guideline, 3rd ed. Wayne (PA): CLSI, 2013.
  • 51. Ceriotti F. Prerequisites for use of common reference intervals. Clin Biochem Rev 2007;28:115–21.
  • 52. Adeli K, Raizman JE, Chen Y, Higgins V, Nieuwesteeg M, Abdelhaleem M, et al. Complex biological profile of hematologic markers across pediatric, adult, and geriatric ages: establishment of robust pediatric and adult reference intervals on the basis of the Canadian Health Measures Survey. Clin Chem 2015;61:1075–86.
  • 53. Ozarda Y, Ichihara K, Aslan D, Aybek H, Ari Z, Taneli F, et al. A multicenter nationwide reference intervals study for common biochemical analytes in Turkey using Abbott analyzers. Clin Chem Lab Med 2014;52:1823–33.
  • 54. Tate JR, Sikaris KA, Jones GR, Yen T, Koerbin G, Ryan J, et al. Harmonising adult and paediatric reference intervals in Australia and New Zealand: an evidence-based approach for establishing. A first panel of chemistry analytes. Clin Biochem Rev 2014;35:213–35.
  • 55. Ichihara K, Ozarda Y, Barth JH, Klee G, Shimizu Y, Xia L, et al. A global multicenter study on reference values: 2. Exploration of sources of variation across the countries. Clin Chim Acta 2017;467:83–97.
  • 56. Ichihara K, Ozarda Y, Klee G, Straseski J, Barth JH, Baumann N, et al. Utility of panel of sera for alignment of test results in the worldwide multicenter study on reference values. Clin Chem Lab Med 2013;51:1007–20.
  • 57. Waise A, Price HC. The upper limit of the reference range for thyroid-stimulating hormone should not be confused with a cut-off to define subclinical hypothyroidism. Ann Clin Biochem 2009;46:93–8.
  • 58. Lindstedt G, Tryding N. There is difference between decision limits and reference intervals. Reference intervals are based on measurements in healthy individuals, decision limits on measurements in patients. Lakartidningen 2007;104:2076–9.
  • 59. EMA. Guideline on clinical investigation of medicinal products in the treatment or prevention of diabetes mellitus. European Medicines Agency, 2012. Available from: http://www.ema.europa.eu/ docs/en_GB/document_library/Scientific_guideline/2012/06/ WC500129-256.pdf [cited 2018 June 15].
  • 60. Expert Committee on the Diagnosis Classification of Diabetes Mellitus. Report of the expert committee on the diagnosis and classification of diabetes mellitus. Diabetes Care 2003;26:S5–20.
  • 61. Zweig MH, Campbell G. Receiver-operating characteristic (ROC) plots: a fundamental evaluation tool in clinical medicine. Clin Chem 1993;39:561–77.
  • 62. Kallner A. Bayes’ theorem, the ROC diagram and reference values: definition and use in clinical diagnosis. Biochem Med (Zagreb) 2018;28:010101.
  • 63. Reach G. Which threshold to detect hypoglycemia? Value of receiver-operator curve analysis to find a compromise between sensitivity and specificity. Diabetes Care 2001;24:803–4.
  • 64. Campbell C, Caldwell G, Coates P, Flatman R, Georgiou A, Horvath AR, et al. Consensus statement for the management and communication of high risk laboratory results. Clin Biochem Rev 2015;36:97–105.
  • 65. White GH, Campbell CA, Horvath AR. Is this a critical, panic, alarm, urgent, or markedly abnormal result? Clin Chem 2014;60:1569–70.
  • 66. Petersen PH, Jensen EA, Brandslund I. Analytical performance, reference values and decision limits. A need to differentiate between reference intervals and decision limits and to define analytical quality specifications. Clin Chem Lab Med 2011;50:819–31.
  • 67. Petersen PH, Klee GG. Influence of analytical bias and imprecision on the number of false positive results using guideline-driven medical decision limits. Clin Chim Acta 2014;430:1–8.
APA ÖZARDA Y (2020). Establishing and using referenceintervals. , 1 - 10. 10.1515/tjb-2017-0299
Chicago ÖZARDA Yeşim Establishing and using referenceintervals. (2020): 1 - 10. 10.1515/tjb-2017-0299
MLA ÖZARDA Yeşim Establishing and using referenceintervals. , 2020, ss.1 - 10. 10.1515/tjb-2017-0299
AMA ÖZARDA Y Establishing and using referenceintervals. . 2020; 1 - 10. 10.1515/tjb-2017-0299
Vancouver ÖZARDA Y Establishing and using referenceintervals. . 2020; 1 - 10. 10.1515/tjb-2017-0299
IEEE ÖZARDA Y "Establishing and using referenceintervals." , ss.1 - 10, 2020. 10.1515/tjb-2017-0299
ISNAD ÖZARDA, Yeşim. "Establishing and using referenceintervals". (2020), 1-10. https://doi.org/10.1515/tjb-2017-0299
APA ÖZARDA Y (2020). Establishing and using referenceintervals. Türk Biyokimya Dergisi, 45(1), 1 - 10. 10.1515/tjb-2017-0299
Chicago ÖZARDA Yeşim Establishing and using referenceintervals. Türk Biyokimya Dergisi 45, no.1 (2020): 1 - 10. 10.1515/tjb-2017-0299
MLA ÖZARDA Yeşim Establishing and using referenceintervals. Türk Biyokimya Dergisi, vol.45, no.1, 2020, ss.1 - 10. 10.1515/tjb-2017-0299
AMA ÖZARDA Y Establishing and using referenceintervals. Türk Biyokimya Dergisi. 2020; 45(1): 1 - 10. 10.1515/tjb-2017-0299
Vancouver ÖZARDA Y Establishing and using referenceintervals. Türk Biyokimya Dergisi. 2020; 45(1): 1 - 10. 10.1515/tjb-2017-0299
IEEE ÖZARDA Y "Establishing and using referenceintervals." Türk Biyokimya Dergisi, 45, ss.1 - 10, 2020. 10.1515/tjb-2017-0299
ISNAD ÖZARDA, Yeşim. "Establishing and using referenceintervals". Türk Biyokimya Dergisi 45/1 (2020), 1-10. https://doi.org/10.1515/tjb-2017-0299