Yıl: 2021 Cilt: 71 Sayı: 2 Sayfa Aralığı: 63 - 69 Metin Dili: İngilizce DOI: 10.5152/forestist.2021.20059 İndeks Tarihi: 28-09-2021

Prediction by maximum entropy of potential habitat of the cork oak (Quercus suber L.) in Maamora Forest, Morocco

Öz:
In this paper, the maximum entropy (MaxEnt) algorithm was applied to estimate the current and potential distributions of cork oak (Quercus suber L.) in the Maarmora forest of Morocco to provide a basis for its conservation under climate change conditions in the Mediterranean basin. A total of 1,428 field-based spatial records of cork oak locations were used (altitude and 19 bioclimatic environmental variables) to model the potential distribution of the cork oak. The adjusted model had a good predictive quality (area under the curve=0.81). Precipitation during the wettest quarter of the year, seasonality in precipitation, altitude, and seasonal variations in temperature were the key factors determining the distribution of the cork oak in the Maamora forest. Most areas with currently suitable conditions for cork oak were located in the western and central Maamora forest regions, which enjoy a humid bioclimate and receive significant sea spray from the Atlantic Ocean. Moving away from the ocean, the humidity decreases, and the temperature increases, such that the cork oak faces difficulties in adapting and regenerating. The results can be used to identify the high-priority areas for cork oak restoration and conservation of this species against the expected impact of climate change.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • Aafi, A. (2007). Etude de la diversité floristique de l’écosystème de chêne-liège de la forêt de la Mâamora, Thèse de Doctorat d’Etat Es-Science Agronomiques, I.A.V Hassan II, Rabat, p. 190.
  • Abdelaal, M., Foisa, M., Fenua, G., & Bacchetta, G. (2019). Using MaxEnt modeling to predict the potential distribution of the endemic plant Rosa arabica Crép. in Egypt. Ecological Informatics, 50, 68-75. [Crossref]
  • Aghakhani, M., Tamartash, R., Jaafarian, Z., Tarkesh, M., & Tatian, M. R. (2017). Predicting the impacts of climate change on Persian oak (Quercus brantii) using Species Distribution Modelling in Central Zagros for conservation planning. Journal of Environmental Studies, 43, 497-511.
  • Alaoui, A., Laaribya, S., & Ayan, S. (2020). The evolution of the forest cover with the effect of anthropic pressure (The Case Study of Sehoul Cork-Oak Forest in Morocco, North Atlantic). Kastamonu University Journal of Forestry Faculty, 20(1), 62-73. [Crossref]
  • Allouche, O., Tsoar, A., & Kadmon, R. (2006). Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). Journal of Applied Ecology, 43, 1223-1232. [Crossref]
  • Al-Qaddi, N., Vessella, F., Stephan, J., Al-Eisawi, D., & Schirone, B. (2016). Current and future suitability areas of kermes oak (Quercus coccifera L.) in the Levant under climate change. Regional Environmental Change, 17, 143-156. [Crossref]
  • Anonymous, (2020). Inventaire Forestier National. Haut-Commissariat aux Eaux et Forêts et à la Lutte Contre la Désertification. Maroc (database)
  • Araújo, M. B., Pearson, R., Thuiller, W., & Erhard, M. (2005). Validation of species–climate impact models under climate change. Global Change Biology, 11, 1504-1513. [Crossref]
  • Baldwin, R. A. (2009). Use of Maximum Entropy Modelling in Wildlife Research, Entropy, 11, 854-866. [Crossref]
  • Benabid, A. (2000). Flore et écosystème du Maroc: évaluation et préservation de la biodiversité. Ibis Press, Paris, p. 357.
  • Boudy, P. (1950). Economie forestière Nord-africaine - Tome 2: monographies et traitements des essences forestières. Paris: E. larose, p. 878.
  • Bugalho, M. N., Caldeira, M. C., Pereira, J. S., Aronson, J., & Pausas, J. G. (2011). Mediterranean cork oak savannas require human use to sustain biodiversity and ecosystem services. Frontiers in Ecology and the Environment, 9, 278-286. [Crossref]
  • Channell, R., & Lomolino, M. V. (2000). Dynamic biogeography and conservation of endangered species. Nature, 403, 84-86. [Crossref]
  • Elith, J., Phillips, S. J., Hastie, T., Dudik, M., Chee, Y. E., & Yates, C. J. (2011). A statistical explanation of MaxEnt for ecologists. Diversity Distributions, 17, 43-57. [Crossref]
  • Emberger, L. (1939). Aperçu général sur la végétation du Maroc. Commentaire de la carte phytogéographique du Maroc au 1/500 000. Veröff. Geobot. Inst. Rübel in Zürich, 14, 40-157. + carte hors texte.
  • Ezzahiri, M., & Belghazi, B. (2000). Synthèse de quelques résultats sur la régénération naturelle du cèdre de l’Atlas au Moyen Atlas (Maroc). Science et Changements Planétaires / Sécheresse, 11, 79-84.
  • Fawcett, T. (2006). An introduction to ROC analysis. Pattern Recognition Letter, 27, 861-874. [Crossref]
  • Fick, S. E., & Hijmans, R. J. (2017). WorldClim 2: new 1km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 37(12), 4302-4315. [Crossref]
  • Gil, L., & Varela, M. C., (2008). EUFORGEN Technical Guidelines for Genetic Conservation and use for Cork Oak (Quercus suber). Bioversity International, Rome, p. 6.
  • Hanley, J. A., & McNeil, B. J. (1982). The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology, 143, 29-36. [Crossref]
  • Hidalgo, P.J., Marín, J. M., Quijada, J., & Moreira, J. M. (2008). A spatial distribution model of cork oak (Quercus suber) in southwestern Spain: a suitable tool for reforestation. Forest Ecology and Management, 255, 25-34. [Crossref]
  • Hijmans, R. J. (2004). Arc Macro Language (AML®) version 2.1 for calculating 19 bioclimatic predictors: Berkeley, Calif, Museum of Vertebrate Zoology, University of California at Berkeley. Available at http://www.worldclim.org/bioclim.
  • Laaribya, S. (2006). Il faut sauver la forêt de la Maamora (Maroc), Revue de la forêt méditerranéenne TXXVII N°1, Mars 2006 P. 65-72.
  • Laaribya, S., Alaoui, A., Gmira, N., & Gmira, N. (2013). Contribution à l’évaluation de la pression pastorale dans la forêt de la Maamora. Parcours forestiers et surpaturage. Nature et Technologie C- Sciences de l’Environnement, 10, 39-50.
  • Laaribya, S., Gmira, N., & Assmaa, A. (2010). Towards a coordinated development of the forest in Maamora (Morocco). Kastamonu University Journal of Forestry Faculty, 10(2), 172-179.
  • Lahssini, S., Hajib, S., Lahlaoi, H., Mharzi, Alaoui, H., & Khattabi, A. (2015). Modelling spatial distribution of the Carob Tree (Ceratonia siliqua) in Azilal Province, Morocco. Journal of Geography and Geology, 7(4), 33-44. [Crossref]
  • Lehmann, J., Matthias, C., Janice, T., Caroline, A., William, C., & David, C. (2011). Biochar Effects on Soil Biota-A Review. Soil Biology and Biochemistry, 43, 1812-1836. [Crossref]
  • Lobo, J. M., Jiménez-Valverde, A., & Real, R. (2008). AUC: a misleading measure of the performance of predictive distribution models. Global Ecology and Biogeography, 17, 145-151. [Crossref]
  • López-Tirado, J., Vessella, F., Stephan, J., Ayan, S., Schirone, B., & Hidalgo, P. J. (2020). Effect of climate change on potential distribution of Cedrus libani A. Rich in the twenty‑first century: An Ecological Niche Modeling assessment. New Forests, https://doi.org/10.1007/s11056-020-09798-y [Crossref]
  • Maltez-Mouro, S., García, L. V., & Freitas, H. (2009). Influence of forest structure and environmental variables on recruit survival and performance of two Mediterranean tree species (Quercus faginea L. and Q. suber Lam.). European Journal of Forest Research, 128, 27–36. [Crossref]
  • Marion, J. (1951). La régénération naturelle du chêne liège en Maâmora. Annales de Recherches Forestieres. Maroc: p 25-27.
  • Marion, J. (1953). Observations sur la sylviculture du chêne-liège dans le massif forestier Zaian-Zemmour ou plateau d’Oulmès. Annales de Recherches Forestieres, 3, 1-38.
  • Marion, J. (1955). Les repeuplements artificiels en chêne liège dans la forêt de la Maâmora (Maroc). Annales de Recherches Forestieres. Maroc, 3, 39-158
  • Nix, H. A. (1986). A biogeographic analysis of Australian elapid snakes, in Longmore, Richard, ed., Atlas of elapid snakes of Australia: Canberra, Australian Flora and Fauna Series, 7, Australian Government Publishing Service, p. 4-15.
  • Oubrahim, H., Boulmane, M., Bakker, M. R., Augusto, L., & Halim, M. (2015). Carbon storage in degraded cork oak (Quercus suber) forests on flat lowlands in Morocco. iForest, 9, 125-137. [Crossref]
  • Parmesan, C. (2007). Influences of species, latitudes and methodologies on estimates of phenological response to global warming. Global Change Biology, 13, 1860-1872. [Crossref]
  • Peterson, A. T., Papes, M., & Soberón, J., (2008). Rethinking receiver operating characteristic analysis applications in ecological niche modeling. Ecological Modelling, 213, 63-72. [Crossref]
  • Petit, R. J., Hampe, A., & Cheddadi, R. (2005). Climate changes and tree phylogeography in the Mediterranean. Taxon, 54, 877-885. [Crossref]
  • Phillips, S. J., & Dudik, M. (2008). Modelling of species distributions with Maxent: New extensions and a comprehensive evaluation. Ecography, 31, 161-175. [Crossref]
  • Phillips, S. J., Anderson, P. R., & Schapire, R. E. (2006). Maximum entropy modelling of species geographic distributions. Ecological Modelling, 190, 231-259. [Crossref]
  • Sedda, L., Delogu, G., & Dettori, S. (2011). Forty-four years of land use changes in a Sardinian cork oak agro-silvopastoral system: a qualitative analysis. The Open Forest Science Journal, 4, 57–66. [Crossref]
  • Stephan, J., Bercachy, C., Bechara, J., Charbel, E., & López-Tirado, J. (2020). Local ecological niche modelling to provide suitability maps for 27 forest tree species in edge conditions. iForest, 13, 230-237. [Crossref]
  • Terribile, L. C., Diniz, J. A. F., & De Marco, P. (2010). How many studies are necessary to compare niche-based models for geographic distributions? Inductive reasoning may fail at the end. Brazilian Journal of Biology. 70, 263-269. [Crossref]
  • Thuiller, W., Araújo, M. B., & Lavorel, S. (2003). Generalized models vs. classification tree analysis: predicting spatial distributions of plant species at different scales. Journal of Vegetable Science, 14, 669-680. [Crossref]
  • Vessella, F., & Schirone, B. (2013). Predicting potential distribution of Quercus suber in Italy based on ecological niche models: Conservation insights and reforestation involvements. Forest Ecology and Management, 304, 150-161. [Crossref]
  • Vessella, F., Parlante, A., Schirone, A., Sandoletti, G., Bellarosa, R., Piovesan, G., Santi, L., & Schirone, B. (2010). Irrigation regime as a key factor to improve growth performance of Quercus suber L. Scand. Journal of Forestry Research, 25(Suppl 8), 68-74. [Crossref]
APA Laaribya S, Assmaa A, Ayan S, Abdelkader B, Labbaci A, Halim O, BIJOU M (2021). Prediction by maximum entropy of potential habitat of the cork oak (Quercus suber L.) in Maamora Forest, Morocco. , 63 - 69. 10.5152/forestist.2021.20059
Chicago Laaribya Said,Assmaa Alaoui,Ayan Sezgin,Abdelkader BENABOU,Labbaci Adnane,Halim OUHADDOU,BIJOU MOHAMMED Prediction by maximum entropy of potential habitat of the cork oak (Quercus suber L.) in Maamora Forest, Morocco. (2021): 63 - 69. 10.5152/forestist.2021.20059
MLA Laaribya Said,Assmaa Alaoui,Ayan Sezgin,Abdelkader BENABOU,Labbaci Adnane,Halim OUHADDOU,BIJOU MOHAMMED Prediction by maximum entropy of potential habitat of the cork oak (Quercus suber L.) in Maamora Forest, Morocco. , 2021, ss.63 - 69. 10.5152/forestist.2021.20059
AMA Laaribya S,Assmaa A,Ayan S,Abdelkader B,Labbaci A,Halim O,BIJOU M Prediction by maximum entropy of potential habitat of the cork oak (Quercus suber L.) in Maamora Forest, Morocco. . 2021; 63 - 69. 10.5152/forestist.2021.20059
Vancouver Laaribya S,Assmaa A,Ayan S,Abdelkader B,Labbaci A,Halim O,BIJOU M Prediction by maximum entropy of potential habitat of the cork oak (Quercus suber L.) in Maamora Forest, Morocco. . 2021; 63 - 69. 10.5152/forestist.2021.20059
IEEE Laaribya S,Assmaa A,Ayan S,Abdelkader B,Labbaci A,Halim O,BIJOU M "Prediction by maximum entropy of potential habitat of the cork oak (Quercus suber L.) in Maamora Forest, Morocco." , ss.63 - 69, 2021. 10.5152/forestist.2021.20059
ISNAD Laaribya, Said vd. "Prediction by maximum entropy of potential habitat of the cork oak (Quercus suber L.) in Maamora Forest, Morocco". (2021), 63-69. https://doi.org/10.5152/forestist.2021.20059
APA Laaribya S, Assmaa A, Ayan S, Abdelkader B, Labbaci A, Halim O, BIJOU M (2021). Prediction by maximum entropy of potential habitat of the cork oak (Quercus suber L.) in Maamora Forest, Morocco. FORESTIST, 71(2), 63 - 69. 10.5152/forestist.2021.20059
Chicago Laaribya Said,Assmaa Alaoui,Ayan Sezgin,Abdelkader BENABOU,Labbaci Adnane,Halim OUHADDOU,BIJOU MOHAMMED Prediction by maximum entropy of potential habitat of the cork oak (Quercus suber L.) in Maamora Forest, Morocco. FORESTIST 71, no.2 (2021): 63 - 69. 10.5152/forestist.2021.20059
MLA Laaribya Said,Assmaa Alaoui,Ayan Sezgin,Abdelkader BENABOU,Labbaci Adnane,Halim OUHADDOU,BIJOU MOHAMMED Prediction by maximum entropy of potential habitat of the cork oak (Quercus suber L.) in Maamora Forest, Morocco. FORESTIST, vol.71, no.2, 2021, ss.63 - 69. 10.5152/forestist.2021.20059
AMA Laaribya S,Assmaa A,Ayan S,Abdelkader B,Labbaci A,Halim O,BIJOU M Prediction by maximum entropy of potential habitat of the cork oak (Quercus suber L.) in Maamora Forest, Morocco. FORESTIST. 2021; 71(2): 63 - 69. 10.5152/forestist.2021.20059
Vancouver Laaribya S,Assmaa A,Ayan S,Abdelkader B,Labbaci A,Halim O,BIJOU M Prediction by maximum entropy of potential habitat of the cork oak (Quercus suber L.) in Maamora Forest, Morocco. FORESTIST. 2021; 71(2): 63 - 69. 10.5152/forestist.2021.20059
IEEE Laaribya S,Assmaa A,Ayan S,Abdelkader B,Labbaci A,Halim O,BIJOU M "Prediction by maximum entropy of potential habitat of the cork oak (Quercus suber L.) in Maamora Forest, Morocco." FORESTIST, 71, ss.63 - 69, 2021. 10.5152/forestist.2021.20059
ISNAD Laaribya, Said vd. "Prediction by maximum entropy of potential habitat of the cork oak (Quercus suber L.) in Maamora Forest, Morocco". FORESTIST 71/2 (2021), 63-69. https://doi.org/10.5152/forestist.2021.20059