Yıl: 2021 Cilt: 71 Sayı: 2 Sayfa Aralığı: 84 - 92 Metin Dili: İngilizce DOI: 10.5152/forestist.2020.20012 İndeks Tarihi: 28-09-2021

Carbon concentration in the coastal afforestation sites of Cox’s Bazar, Bangladesh

Öz:
This study quantified carbon in tree biomass and soil in the coastal afforestation sites of Cox’s Bazar, Bangladesh. It estimated that the total biomass density of Avicennia alba, Avicennia officinalis, Casuarina equisetifolia, and Sonneratia apetala were 225.81 ± 13.85, 56.07 ± 9.21, 320.39 ± 20.84 and 179.82 ± 4.69 tha-1, respectively, with mean annual increment of 9.82 ± .60, 7.01 ± 1.15, 32.07 ± 1.63 and 7.82 ± .2 tha-1, respectively. Furthermore, the total biomass carbon of A. alba, A. officinalis, C. equisetifolia, and S. apetala were 112.90 ± 6.92, 28.03 ± 4.61, 160.19 ± 10.42 and 89.91 ± 2.34 tCha-1, respectively, with mean annual increment of 4.91 ± .30, 3.51 ± .58, 16.04 ± .81 and 3.91 ± .10 tCha-1yr-1, respectively. The soil organic carbon stock was the highest in the A. alba plantation (12.45 ± .20 tCha-1 at 10 cm depth and 37.33 ± .61 tCha-1 at 30 cm depth). On the contrary, the soil carbon stock in the C. equisetifolia stands were the lowest at both soil depths (4.43 ± .20 at 10 cm depth and 13.30 ± .61 tCha-1 at 30 cm depth). However, the total carbon, which includes that of the tree biomass and soil, was the highest at both soil depths in the C. equisetifolia stands (164.63 ± 10.58 tCha-1 and 173.49 ± 10.90 tCha-1), and the lowest in the A. officinalis stands. The present study concludes that C. equisetifolia stands have enormous potential to mitigate climate change in the coastal areas of Cox’s Bazar, Bangladesh. The findings of the study will expedite the research and policymaking on climate change mitigation in Bangladesh.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • Ahmed, I., & Iqbal, M. Z. (2011). Sundarbans carbon Inventory 2010, a comparison with 1997 Inventory. SAARC Forestry, 1, 59-72.
  • Ahmed, N., Cheung, W. W., Thompson, S., & Glaser, M. (2017). Solutions to blue carbon emissions: Shrimp cultivation, mangrove deforestation and climate change in coastal Bangladesh. Marine Policy, 82, 68-75. [Crossref]
  • Akter, S., Rahman, M., & Al Amin, M. (2013). Chittagong university campus: Rich in forest growing stock of valuable timber tree species in Bangladesh. Journal of Forest and Environmental Science, 29(2), 157-164. [Crossref]
  • Alamgir, M., & Al Amin, M. (2007). Organic carbon storage in trees within different Geopositions of Chittagong (South) Forest Division, Bangladesh. Journal of Forestry Research, 18(3), 174. [Crossref]
  • Alongi, D. M. (2012). Carbon sequestration in mangrove forests. Carbon Management, 3(3), 313-322. [Crossref]
  • Aysha, A., Hena, M. K. A., Mishra, M., Nesarul, M. H., Padhi, B. K., Mishra, S. K., Islam, M. S., Idris, M. H., & Masum, M.B. (2015). Sediment and carbon accumulation in sub-tropical salt marsh and mangrove habitats of north-eastern coast of Bay of Bengal, Indian Ocean. International Journal of Fisheries and Aquatic Studies, 2(4), 184-189.
  • Barua, S. K., & Haque, S. M. S. (2013). Soil characteristics and carbon sequestration potentials of vegetation in degraded hills of Chittagong, Bangladesh. Land Degradation and Development, 24(1), 63-71. [Crossref]
  • BBS, (2012). Population and housing census 2011. Dhaka, Bangladesh, p. 363.
  • Chanda, A., Mukhopadhyay, A., Ghosh, T., Akhand, A., Mondal, P., Ghosh, S., Mukherjee, S., Wolf, J., Lazar, A. N., & Rahman, M. M. (2016). Blue carbon stock of the Bangladesh Sundarban mangroves: what could be the scenario after a century? Wetlands, 36(6), 1033-1045. [Crossref]
  • Chmura, G. L., Anisfeld, S. C., Cahoon, D. R. & Lynch, J. C. (2003). Global carbon sequestration in tidal, saline wetland soils. Global Biogeochemical Cycles, 17(4), 22-31. [Crossref]
  • Chowdhury, M. S., Hossain, M. S., Mitra, A., & Barua, P. (2011). Environmental functions of the Teknaf Peninsula mangroves of Bangladesh to communicate the values of goods and services. Mesopotamian Journal of Marine Science, 26(1), 79-97.
  • Cox, P. M., Betts, R. A., Jones, C. D., Spall, S. A., & Totterdell, I. J. (2000). Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature, 408(6809), 184-187. [Crossref]
  • Dar, J. A., & Sundarapandian, S. (2015). Variation of biomass and carbon pools with forest type in temperate forests of Kashmir Himalaya, India. Environmental Monitoring and Assessment, 187(2), 55. [Crossref]
  • Das, S., & Siddiqi, N. A. (1985). The mangroves and mangrove forests of Bangladesh. Bulletin-Bangladesh Forest Research Institute. Mangrove Silviculture Division (Bangladesh). no. 2.
  • De Wit, H. A., Palosuo, T., Hylen, G., & Liski, J. (2006). A carbon budget of forest biomass and soils in southeast Norway calculated using a widely applicable method. Forest Ecology and Management, 225(1-3), 15-26. [Crossref]
  • Dey, A., Islam, M., & Masum, K. M. (2014). Above ground carbon stock through palm tree in the homegarden of Sylhet City in Bangladesh. Journal of Forest and Environmental Science, 30(3), 293-300. [Crossref]
  • Donato, D. C., Kauffman, J. B., Murdiyarso, D., Kurnianto, S., Stidham, M., & Kanninen, M. (2011). Mangroves among the most carbon-rich forests in the tropics. Nature Geoscience, 4(5), 293. [Crossref]
  • Estrada, G. C. D., Soares, M. L. G., Chaves, F. D. O., & Cavalcanti, V. F. (2013). Analysis of the structural variability of mangrove forests through the physiographic types approach. Aquatic Botany, 111, 135-143. [Crossref]
  • Hanif, M. A., Bari, M. S., & Abiar Rahman, M. (2015). Potentiality of carbon sequestration by agroforestry species in Bangladesh. Research on Crops, 16(3), 562-567. [Crossref]
  • Haque, S. M. S., Hossain, K. M., & Kabir, M. A. (2000). Performance of some common mangrove species in Sitakunda and Miresarai forest range under Chittagong coastal afforestation division. The Chittagong University Journal of Science, 24(2), 1-10.
  • Haque, S. M. S., & Karmakar, N. C. 2009. Organic matter accumulation in hill forests of Chittagong region, Bangladesh. Journal of Forestry Research, 20(3), 249-253.
  • Hoque, A., Sharma, S., & Hagihara, A. (2011). Above and belowground carbon acquisition of mangrove Kandelia obovata trees in Manko Wetland, Okinawa, Japan. International Journal of Environment, 1(1), 7-13. [Crossref]
  • Hossain, M., Saha, C., Abdullah, S. M. R., Saha, S., & Siddique, M. R. H. (2016a). Allometric biomass, nutrient and carbon stock models for Kandelia candel of the Sundarbans, Bangladesh. Trees, 30(3), 709-717. [Crossref]
  • Hossain, M., Shaikh, M. A., Saha, C., Abdullah, S. M. R., Saha, S., & Siddique, M. R. H. (2016b). Above-ground biomass, nutrients and carbon in Aegiceras corniculatum of the Sundarbans. Open Journal of Forestry, 6(2), 72. [Crossref]
  • Hossain, M. S., & Banik, G. R. (2005). Development of organic carbon sequestration models for Dipterocarpus Turbinatus, Acacia Auriculiformis and Eucalyptus Camaldulensis and their Potentiality. European Journal of Scientific Research, 14(3), 447-455.
  • IPCC, (2014). Climate change 2014: synthesis report. contribution of working groups i,ii and iii to the fifth assessment report of the intergovernmental panel on climate change [core writing team, Rajendra K Pachauri and Leo Meyer (eds.)]. IPCC, Geneva, Switzerland, p. 151.
  • Islam, A., & Sikka, A. K. (2010). Climate change and water resources in India: impact assessment and adaptation strategies, Natural and Anthropogenic Disasters. Springer, pp. 386-412. [Crossref]
  • Islam, M., Deb, G. P., & Rahman, M. (2017). Forest fragmentation reduced carbon storage in a moist tropical forest in Bangladesh: Implications for policy development. Land Use Policy, 65, 15-25. [Crossref]
  • Islam, M. S. (2016). How worthy is the Sundarbans mangrove forest? An exploratory study. Environment and Natural Resources Journal, 14(1), 17-25.
  • Islam, S. A., & Rahman, M. M. (2015). Coastal afforestation in Bangladesh to combat climate change induced hazards. Journal of Science, Technology & Environment Informatics, 2(1), 13-25. [Crossref]
  • Jaman, M. S., Hossain, M. F., Islam, M. S., Helal, M. G. J., & Jamil, M. (2016). Quantification of carbon stock and tree diversity of homegardens in Rangpur district, Bangladesh. International Journal of Agriculture and Forestry, 6(5), 169-180.
  • Jordan, S. D. (2007). Global climate change triggered by global warming. Skeptical Inquirer, 31(3), 32-39.
  • Kamruzzaman, M., Ahmed, S., Paul, S., Rahman, M. M., & Osawa, A. (2018). Stand structure and carbon storage in the oligohaline zone of the Sundarbans mangrove forest, Bangladesh. Forest Science and Technology, 14(1), 1-6. [Crossref]
  • Laffoley, D., & Grimsditch, G. D. (2009). The management of natural coastal carbon sinks. IUCN.
  • Lal, M., & Singh, R. (2000). Carbon sequestration potential of Indian forests. Environmental Monitoring and Assessment, 60(3), 315-327. [Crossref]
  • Lasco, R. D., & Cardinoza, M. M. (2007). Baseline carbon stocks assessment and projection of future carbon benefits of a carbon sequestration project in East Timor. Mitigation and Adaptation Strategies for Global Change, 12(2), 243-257. [Crossref]
  • Mazumder, G. C., Rahman, M. H., Huque, S., & Shams, N. (2016). A modeled carbon emission analysis of Rampal power plant In Bangladesh and a review of carbon reduction technologies. International Journal of Scientific & Technology Research, 5, 257-264.
  • McLeod, S. (1973). Studies on wet oxidation procedures for the determination of organic carbon in soils, Notes on soil techniques. CSIRO Division of Soils, Canberra, pp. 73-79.
  • Miah, M., Siddik, M., & Shin, M. (2013). Socio-economic and environmental impacts of casuarina shelterbelt in the Chittagong coast of Bangladesh. Forest Science and Technology, 9(3), 156-163.
  • Miah, M., Uddin, M. F., Bhuiyan, M. K., Koike, M., & Shin, M. Y. (2009). Carbon sequestration by the indigenous tree species in the reforestation program in Bangladesh - Aphanamixis polystachya Wall. and Parker. Forest Science and Technology, 5(2), 62-65. [Crossref]
  • Miah, M. D., Shin, M. Y., & Koike, M. (2011). Forests to climate change mitigation: clean development mechanism in Bangladesh. Springer Science & Business Media, Heidelberg, Germany. [Crossref]
  • Moslehuddin, A. Z. M., Rahman, M. A., Ullah, S. M. A., Moriyama, M., & Tani, M. (2018). Physiography, Forests, and People in Teknaf, Deforestation in the Teknaf Peninsula of Bangladesh. Springer, pp. 11-40. [Crossref]
  • Pearson, T., Walker, S., & Brown, S. (2005). Sourcebook for land use, land use change and forestry projects. Winrock International, Arkansas, USA.
  • Petrokofsky, G., Kanamaru, H., Achard, F., Goetz, S. J., Joosten, H., Holmgren, P., Lehtonen, A., Menton, M. C. S., Pullin, A. S., & Wattenbach, M. (2012). Comparison of methods for measuring and assessing carbon stocks and carbon stock changes in terrestrial carbon pools. How do the accuracy and precision of current methods compare? A systematic review protocol. Environmental Evidence, 1(1), 6. [Crossref]
  • Rahman, M., Sarker, M. H., & Hossen, T. (2013). Effects of human induced activities on carbon emission in Chittagong district, Bangladesh. International Journal of Agriculture and Forestry, 3(3), 71-76.
  • Rahman, M. M., Kabir, M. E., Akon, A. S. M. J. U., & Ando, K. (2015a). High carbon stocks in roadside plantations under participatory management in Bangladesh. Global Ecology and Conservation, 3, 412-423. [Crossref]
  • Rahman, M. M., Khan, M. N. I., Hoque, A. K. F., & Ahmed, I. (2015b). Carbon stock in the Sundarbans mangrove forest: spatial variations in vegetation types and salinity zones. Wetlands Ecology and Management, 23(2), 269-283. [Crossref]
  • Ren, H., Chen, H., Li, Z., & Han, W. (2010). Biomass accumulation and carbon storage of four different aged Sonneratia apetala plantations in Southern China. Plant and Soil, 327(1-2), 279-291. [Crossref]
  • Saha, P. K., Rahman, M. S., Khatun, M., Hossain, A. T. M. S., & Saleque, M. A. (2014). Assessment of soil carbon stock of some selected agroecological zones of Bangladesh. Bangladesh Journal of Agricultural Research, 38(4), 625-635. [Crossref]
  • Shaifullah, K. M., Mezbahuddin, M., Sujauddin, M., & Haque, S. M. S. (2008). Effects of coastal afforestation on some soil properties in Lakshmipur coast of Bangladesh. Journal of Forestry Research, 19(1), 32-36. [Crossref]
  • Shaifullah, K. M., Sirajul Haque, S. M., Sujauddin, M., & Karmakar, S. (2009). Coastal afforestation effects on soil properties at Hatiya in Bangladesh. Journal of Forestry Research, 20(3), 243-248. [Crossref]
  • Shin, M. Y., Miah, M. D., & Lee, K. H. (2007). Potential contribution of the forestry sector in Bangladesh to carbon sequestration. Journal of Environmental Management, 82(2), 260-276. [Crossref]
  • Shrestha, B. M., & Singh, B. R. (2008). Soil and vegetation carbon pools in a mountainous watershed of Nepal. Nutrient Cycling in Agroecosystems, 81(2), 179-191. [Crossref]
  • Siddiqi, N. A. (2001). Mangrove forestry in Bangladesh. Institute of Forestry and Environmental Sciences, University of Chittagong, Bangladesh.
  • Sohel, M. S. I., Alamgir, M., Akhter, S., & Rahman, M. (2015). Carbon storage in a bamboo (Bambusa vulgaris) plantation in the degraded tropical forests: Implications for policy development. Land Use Policy, 49, 142-151. [Crossref]
  • Steinke, T. D., Ward, C. J., & Rajh, A. (1995). Forest structure and biomass of mangroves in the Mgeni estuary, South Africa. Hydrobiologia, 295(1 & 3), 159-166. [Crossref]
  • Tschakert, P. (2004). Carbon for farmers: assessing the potential for soil carbon sequestration in the old peanut basin of Senegal. Climate Change, 67(2-3), 273-290. [Crossref]
  • Uddin, J. (2016). Soil organic carbon dynamics in two major alluviums of Bangladesh. Doctoral dissertation. Kingston University.
  • Uddin, M. M., & Hossain, K. M. (2013). Status and protective role of mangrove plantations; a case study of Mirsharai coastal forest, Bangladesh. Journal of Agricultural Science and Bioresource Engineering Research, 2(2), 47-59.
  • Ullah, M. R., & Al Amin, M. (2012). Above-and below-ground carbon stock estimation in a natural forest of Bangladesh. Journal of Forest Science, 58(8), 372-379. [Crossref]
  • Ullah, M. R., Banik, G. R., & Banik, R. (2014). Developing allometric models for carbon stock estimation in eighteen year old plantation forests of Bangladesh. Journal of Microbiology and Pathology, 1, 1-8.
  • Walkley, A., & Black, J. A. (1934). An examination of the Degtjareff method for determination of soil organic matter and a proposed modification of the chromic acid titration method. Soil Science, 37(1), 29-38. [Crossref]
  • YingChun, L., GuiRui, Y., QiuFeng, W., YangJian, Z., & ZeHong, X. (2014). Carbon carry capacity and carbon sequestration potential in China based on an integrated analysis of mature forest biomass. Science China Life Sciences, 57(12), 1218-1229. [Crossref]
APA MIAH M, Hossain A (2021). Carbon concentration in the coastal afforestation sites of Cox’s Bazar, Bangladesh. , 84 - 92. 10.5152/forestist.2020.20012
Chicago MIAH MD. DANESH,Hossain Asif Carbon concentration in the coastal afforestation sites of Cox’s Bazar, Bangladesh. (2021): 84 - 92. 10.5152/forestist.2020.20012
MLA MIAH MD. DANESH,Hossain Asif Carbon concentration in the coastal afforestation sites of Cox’s Bazar, Bangladesh. , 2021, ss.84 - 92. 10.5152/forestist.2020.20012
AMA MIAH M,Hossain A Carbon concentration in the coastal afforestation sites of Cox’s Bazar, Bangladesh. . 2021; 84 - 92. 10.5152/forestist.2020.20012
Vancouver MIAH M,Hossain A Carbon concentration in the coastal afforestation sites of Cox’s Bazar, Bangladesh. . 2021; 84 - 92. 10.5152/forestist.2020.20012
IEEE MIAH M,Hossain A "Carbon concentration in the coastal afforestation sites of Cox’s Bazar, Bangladesh." , ss.84 - 92, 2021. 10.5152/forestist.2020.20012
ISNAD MIAH, MD. DANESH - Hossain, Asif. "Carbon concentration in the coastal afforestation sites of Cox’s Bazar, Bangladesh". (2021), 84-92. https://doi.org/10.5152/forestist.2020.20012
APA MIAH M, Hossain A (2021). Carbon concentration in the coastal afforestation sites of Cox’s Bazar, Bangladesh. FORESTIST, 71(2), 84 - 92. 10.5152/forestist.2020.20012
Chicago MIAH MD. DANESH,Hossain Asif Carbon concentration in the coastal afforestation sites of Cox’s Bazar, Bangladesh. FORESTIST 71, no.2 (2021): 84 - 92. 10.5152/forestist.2020.20012
MLA MIAH MD. DANESH,Hossain Asif Carbon concentration in the coastal afforestation sites of Cox’s Bazar, Bangladesh. FORESTIST, vol.71, no.2, 2021, ss.84 - 92. 10.5152/forestist.2020.20012
AMA MIAH M,Hossain A Carbon concentration in the coastal afforestation sites of Cox’s Bazar, Bangladesh. FORESTIST. 2021; 71(2): 84 - 92. 10.5152/forestist.2020.20012
Vancouver MIAH M,Hossain A Carbon concentration in the coastal afforestation sites of Cox’s Bazar, Bangladesh. FORESTIST. 2021; 71(2): 84 - 92. 10.5152/forestist.2020.20012
IEEE MIAH M,Hossain A "Carbon concentration in the coastal afforestation sites of Cox’s Bazar, Bangladesh." FORESTIST, 71, ss.84 - 92, 2021. 10.5152/forestist.2020.20012
ISNAD MIAH, MD. DANESH - Hossain, Asif. "Carbon concentration in the coastal afforestation sites of Cox’s Bazar, Bangladesh". FORESTIST 71/2 (2021), 84-92. https://doi.org/10.5152/forestist.2020.20012