Yıl: 2021 Cilt: 71 Sayı: 2 Sayfa Aralığı: 93 - 101 Metin Dili: İngilizce DOI: 10.5152/forestist.2020.20036 İndeks Tarihi: 28-09-2021

Post infectional alterations caused by Xylaria polymorpha in the secondary xylem of Lannea coromandelica (Houtt.) Merr

Öz:
Xylaria polymorpha is known to cause root rot disease in hardwood trees. In the present study, trees of the species Lannea coromandelica infected with X. polymorpha showed symptoms consistent with root rot disease and also presented with a soft rot decay pattern. Bright-field microscopy, Confocal Microscopy, and Scanning Electron Microscopy revealed that fungal mycelia penetrated the S2 layer of the fiber wall while axial parenchyma was found to be relatively resistant without much visible damage. Occasionally, separation of the parenchyma adjacent to fiber occurred due to the dissolution of the compound middle lamella. Ray parenchyma cells showed several boreholes having irregular shapes and sizes. Enlargement of the pits in axial and ray parenchyma was present in all the samples investigated. Xylem fibers were the most susceptible cell type and developed several tunnels through the S2 layer. Tunnels formed in the S2 layer of the fiber wall by the mycelia showed L- and/or T-bending. The diameter of the tunnels started narrow, increasing in size as the tunnels extended into the S3 layer. In some instances, complete removal of the S3 layer and fusion of the tunnels with the fiber lumen appearing as U-shaped erosion troughs was observed. At the advanced stage of decay, extensive damage was observed in the vessel walls, leaving the middle lamella and wall layer facing the vessel lumen intact. In conclusion the anatomical characteristics observed in the present study suggests that X. polymopha is an aggressive saprobe with strong ligninolytic activity causing soft rot type 2 decay in the wood cell wall of Lannea coromandelica.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • Anonymous, (2008). Medicinal Mushrooms: Investigating bioactive compounds from kingdom fungi. Available from: http://healing-mushrooms.net/archives/xylaria-polymorpha.html
  • Arnold, E., Maynard, Z., Gilbert., G. S., Coley, P. D., & Kursar, T. A. (2000). Are tropical fungal endophytes hyperdiverse? Ecology Letters, 3(4), 267-274. [Crossref]
  • Basri E., & Hadjib, S. (2005). Basic properties in relation to drying properties of three wood species from Indonesia. Journal of Forestry Research, 2(1), 49-56. [Crossref]
  • Berlyn, G. P., & Miksche, J. P. (1976). Botanical microtechnique and cytochemistry. The Iowa State University Press, Ames, Iowa, pp. 326. [Crossref]
  • Blanchette, R. A., Obst, J. R., Hedges, J. I., & Weliky, K. (1988). Resistance of hardwood vessels to degradation by white rot Basidiomycetes. Canadian Journal of Botany, 66, 1841-1847. [Crossref]
  • Blanchette, R. A., Otjen, L., & Carlson, M. C. (1987). Lignin distribution in cell walls of birch wood decayed by white rot basidiomycetes. Phytopathology, 77(5), 684-690. [Crossref]
  • Blanchette, R. A. (2000). A review of microbial deterioration found in archaeological wood from different environments. International Biodeterioraton and Biodegradation, 46, 189-204. [Crossref]
  • Canadian Forest Service, 2012. Xylaria root rot - Trees, insects and diseases of Canada’s forests. Available from: http://www.tidcf.nrcan.gc.ca/diseases/factsheet/32
  • Davis, E. C., Franklin, J. B., Shaw, A. J., & Vilgalys, R. (2003). Endophytic Xylaria (Xylariaceae) among liverworts and angiosperms: phylogenetics, distribution, and symbiosis. American Journal of Botany, 90(11), 1661-1667. [Crossref]
  • Donaldson, L. A., & Radotic, K. (2013). Fluorescence lifetime imaging of lignin autofluorescence in normal and compression wood. Journal of Microscopy, 251(2), 178-187. [Crossref]
  • Donaldson, L.A., & Lausberg, M. J. F. (1998). Comparison of conventional transmitted light and confocal microscopy for measuring wood cell dimensions by image analysis. International Association of Wood Anatomists Journal, 19(3), 321-336. [Crossref]
  • Donaldson, L. A., Radotic, K., Kalauzi, A., Djikanovic, D., & Jeremic, M. (2010). Quantification of compression wood severity in tracheids of Pinus radiata D. Don using confocal fluorescence imaging and spectral deconvolution. Journal of Structural Biology, 169(1), 106-115. [Crossref]
  • Fazio, A. T., Papinutti, L., Gómez, B. A., Parera, S. D., Rodríguez, R. A., Siracusano, G., & Maier, M. S. (2010). Fungal deterioration of a Jesuit South American polychrome wood sculpture. International Biodeterioration and Biodegradation, 64, 694-701. [Crossref]
  • Fournier, J., Flessa, F., Peršoh, D., & Stadler, M. (2011). Three new Xylaria species from southwestern Europe. Mycological Progress, 10, 33-52. [Crossref]
  • Gamble, J. S. (1972). A manual of Indian timbers: an account of the growth, distribution, and uses of the trees and shrubs of India and Ceylon, with descriptions of their wood-structure. 2d ed. Dehra Dun: Bishen Singh Mahendra Pal Singh.
  • Grünwald, C., Ruel, K., Kim, Y. S., & Schmitt, U. (2002). On the cytochemistry of cell wall formation in poplar trees. Plant Biology, 4(1), 13-21. [Crossref]
  • Hartman, J., Beale, J., & Bachi, P. (2008). Root and Collar Rots of Tree Fruits. UK Cooperative Extension Service, Plant Pathology Fact sheet. College of Agriculture, University Kentucky (PPFS-FR-T-10).
  • Iiyama, K., & Pant, R. (1988). The mechanism of the Maule colour reaction. Introduction of methylated syringyl nuclei in softwood lignin. Wood Science and Technology, 22, 167-175. [Crossref]
  • Kaur, R., Jaiswal, M. L., & Jain, V. (2012). Preliminary pharmacognostical and phytochemical investigation of bark and leaves of Lannea coromandelica (Houtt.) Merrill. International Journal of Pharmacognosy and Phytochemical Research, 4(3), 82-88.
  • Kitin, P., Voelker, S. L., Meinzer, F. C., Beeckman, H., Strauss, S. H., & Lachenbruch, B. (2010). Tyloses and phenolic deposits in xylem vessels impede water transport in low-lignin transgenic Poplars: A study by cryo-fluorescence microscopy. Plant Physiology, 154(2), 887-898. [Crossref]
  • Koyani, R. D., Sanghvi, G. V., Bhatt, I. M., & Rajput, K. S. (2010). Pattern of delignification in Ailanthus excelsa Roxb, wood by Inonotus hispidus. Mycology, 1, 204-211. [Crossref]
  • Koyani, R. D., Pramod, S., Patel, H. R., Vasava, A. M., Rao, K. S., & Rajput, K. S. (2017). Anatomical characterisaton and in-vitro laboratory decay test of different woods decayed by Xylaria hypoxylon. In: Pandey, KK., Ramakantha V., Chauhan, SS., Arun Kumar AN., (eds.) Wood is good: Current trends and future prospects in wood utlisation, pp 93-103. Springer Nature Singapore Pte Ltd. [Crossref]
  • Liers, C., Ullrich, R., Steffen, K. T., Hatakka, A., & Hofrichter, M. (2006). Minerilization of 14C-labelled synthetic lignin and extracellular enzyme activities of the wood-colonizing ascomycetes Xylaria hypoxylan and Xylaria polymorpha. Applied Microbiology Biotechnology, 69(5), 573-579. [Crossref]
  • Liers, C., Ulrich, R., Pecyna, M., Schlosser, D., & Hofrichter, M. (2007). Production, purification and partial enzymatic and molecular charecterization of laccase from the wood rotting ascomycete Xylaria polymorpha. Enzyme and Microbial Technology, 41, 785-793. [Crossref]
  • Meshitsuka, G., & Nakano, J. (1979). Studies on the mechanism of lignin color reaction (XIII): Maüle color reaction (9). Mokuzai Gakkaishi, 25, 588-594.
  • Micco, V. D., & Aronne, G. (2007). Anatomical features, monomer lignin composition and accumulation of phenolics in 1 year old branches of the Mediterranean Cistus ladanifer L. Botanical Journal of the Linnean Society, 155(3), 361-371. [Crossref]
  • Nakano, J., & Meshitsuka, G. (1978). Studies on the mechanism of lignin colour reaction. XII. Maule color reaction. Mokuzai Gakkaishi, 24, 563-568.
  • Nazma P., Ganapathy, P. M., Sasidharan, N., Bhat, K. M., & Gnanaharan, R. (1981). A handbook of Kerala timbers. KFRI Research Report, 9, 260.
  • Nghi, D. H., Bittner B., & Kellner H. (2012). The Wood rot ascomycete Xylaria polymorpha produces a novel GH78 glycoside hydrolase that exhibits L-Rhamnosidase and feruloyl esterase activities and releases hydroxycinnamic acids from lignocelluloses. Applied and Environmental Microbiology, 78(14), 4893-4901. [Crossref]
  • Nilsson, T., Daniel, G., Kirk, T. K., & Obst, J. R. (1989). Chemistry and microscopy of wood decay by some higher ascomycetes. Holzforschung, 43(1), 11-18. [Crossref]
  • Okane, I., Srikitikulchai, P., Thomas Læssøe, K. T., Sivichai, S., Hywel-Jones, N., Nakagiri, A., & Suzuki, W.P.K. 2008. Study of endophytic Xylariaceae in Thailand: diversity and taxonomy inferred from rDNA sequence analyses with saprobes forming fruit bodies in the field. Mycoscience, 49(6), 359-372. [Crossref]
  • Pointing, S. B., Pelling, A. L., Smith, G. J. D., Hyde, K. D., & Reddy, C. A. (2005). Screening of basidiomycetes and xylariaceous fungi for lignin peroxidase and laccase gene specific sequences. Mycological Research, 109(1), 115-124. [Crossref]
  • Pramod, S., Rao, K. S., & Sundberg, A. (2013). Structural, histochemical and chemical characterization of normal, tension and opposite wood of Subabul (Leucaena leucocephala (Lam.) De Wit.). Wood Science and Technology, 47(4), 777-796. [Crossref]
  • Proffer, T. J. (1988). Xylaria root rot of urban trees caused by Xylaria polymorpha. Plant Disease, 72, 79. [Crossref]
  • Rahman, K. S., Shaikh, A. A., Rahman, M. M., Alam, D. M. N., & Alam, M. R. (2013). The potential for using stem and branch of Bhadi (Lannea Coromandelica) as a lignocellulosic raw material for particleboard. International Research Journal of Biological Sciences, 2(4), 8-12.
  • Saka, S. (2000). Chemical composition and distribution. In: David N- SH. and Shiraishi, N. (eds.), Wood and cellulose chemistry, 2nd edn., Marcel Dekker, Inc. New York, pp. 51-81.
  • Sanghvi, G. V., Koyani, R. D., & Rajput, K. S. (2013). Anatomical characterization of teak wood (Tectona randis L.f.) decayed by fungus Chrysosporium asperatum. Journal of Tropical Forest Science, 25(4), 547-553.
  • Schwarze, F. M. W. R., Baum, S., & Fink, S. (2000). Resistance of fibre regions in wood of Acer pseudoplatanus degraded by Armillaria mellea. Mycological Research, 104(9), 126-132. [Crossref]
  • Schwarze, F. M. W. R. (2007). Wood decay under the microscope. Fungal Biological Review, 21, 133-170. [Crossref]
  • Sturz, A. V., Christie, B. R., & Nowak, J. (2000). Bacterial endophytes: potential role in developing sustainable systems of crop production. Critical Reviewes in Plant Sciences, 19(1), 1-30. [Crossref]
  • Tenguria, R. K., Khan, F. N., & Quereshi, S. (2011). Endophytes-mines of pharmacological therapeutics. World Journal of Science and Technology, 1(5), 127-149.
  • Vijigiri, D., & Sharma, P. P. (2012). Timber yielding plants and their utilities in Nizamabad district of Andhra Pradesh. Journal of Phytology, 4(4), 17-20.
  • Worall, J. J., Anagnost, S. E., & Zabel, R. A. (1997). Comparison of wood decay among diverse lignicolus fungi. Mycologia, 89, 199-219. [Crossref]
  • Xu, F., Sun, R. C., Lu, Q., & Jones, G. L. (2006=. Comparitive study of anatomy and lignin distribution in normal and tension wood of Salix gordejecii. Wood Science and Technology, 40, 358-370. [Crossref]
APA Sivan P, VASAVA A, KOYANI R, Rajput D (2021). Post infectional alterations caused by Xylaria polymorpha in the secondary xylem of Lannea coromandelica (Houtt.) Merr. , 93 - 101. 10.5152/forestist.2020.20036
Chicago Sivan Pramod,VASAVA AJIT,KOYANI RINA DHIRAJLAL,Rajput Dr. Kishore S. Post infectional alterations caused by Xylaria polymorpha in the secondary xylem of Lannea coromandelica (Houtt.) Merr. (2021): 93 - 101. 10.5152/forestist.2020.20036
MLA Sivan Pramod,VASAVA AJIT,KOYANI RINA DHIRAJLAL,Rajput Dr. Kishore S. Post infectional alterations caused by Xylaria polymorpha in the secondary xylem of Lannea coromandelica (Houtt.) Merr. , 2021, ss.93 - 101. 10.5152/forestist.2020.20036
AMA Sivan P,VASAVA A,KOYANI R,Rajput D Post infectional alterations caused by Xylaria polymorpha in the secondary xylem of Lannea coromandelica (Houtt.) Merr. . 2021; 93 - 101. 10.5152/forestist.2020.20036
Vancouver Sivan P,VASAVA A,KOYANI R,Rajput D Post infectional alterations caused by Xylaria polymorpha in the secondary xylem of Lannea coromandelica (Houtt.) Merr. . 2021; 93 - 101. 10.5152/forestist.2020.20036
IEEE Sivan P,VASAVA A,KOYANI R,Rajput D "Post infectional alterations caused by Xylaria polymorpha in the secondary xylem of Lannea coromandelica (Houtt.) Merr." , ss.93 - 101, 2021. 10.5152/forestist.2020.20036
ISNAD Sivan, Pramod vd. "Post infectional alterations caused by Xylaria polymorpha in the secondary xylem of Lannea coromandelica (Houtt.) Merr". (2021), 93-101. https://doi.org/10.5152/forestist.2020.20036
APA Sivan P, VASAVA A, KOYANI R, Rajput D (2021). Post infectional alterations caused by Xylaria polymorpha in the secondary xylem of Lannea coromandelica (Houtt.) Merr. FORESTIST, 71(2), 93 - 101. 10.5152/forestist.2020.20036
Chicago Sivan Pramod,VASAVA AJIT,KOYANI RINA DHIRAJLAL,Rajput Dr. Kishore S. Post infectional alterations caused by Xylaria polymorpha in the secondary xylem of Lannea coromandelica (Houtt.) Merr. FORESTIST 71, no.2 (2021): 93 - 101. 10.5152/forestist.2020.20036
MLA Sivan Pramod,VASAVA AJIT,KOYANI RINA DHIRAJLAL,Rajput Dr. Kishore S. Post infectional alterations caused by Xylaria polymorpha in the secondary xylem of Lannea coromandelica (Houtt.) Merr. FORESTIST, vol.71, no.2, 2021, ss.93 - 101. 10.5152/forestist.2020.20036
AMA Sivan P,VASAVA A,KOYANI R,Rajput D Post infectional alterations caused by Xylaria polymorpha in the secondary xylem of Lannea coromandelica (Houtt.) Merr. FORESTIST. 2021; 71(2): 93 - 101. 10.5152/forestist.2020.20036
Vancouver Sivan P,VASAVA A,KOYANI R,Rajput D Post infectional alterations caused by Xylaria polymorpha in the secondary xylem of Lannea coromandelica (Houtt.) Merr. FORESTIST. 2021; 71(2): 93 - 101. 10.5152/forestist.2020.20036
IEEE Sivan P,VASAVA A,KOYANI R,Rajput D "Post infectional alterations caused by Xylaria polymorpha in the secondary xylem of Lannea coromandelica (Houtt.) Merr." FORESTIST, 71, ss.93 - 101, 2021. 10.5152/forestist.2020.20036
ISNAD Sivan, Pramod vd. "Post infectional alterations caused by Xylaria polymorpha in the secondary xylem of Lannea coromandelica (Houtt.) Merr". FORESTIST 71/2 (2021), 93-101. https://doi.org/10.5152/forestist.2020.20036