Yıl: 2021 Cilt: 71 Sayı: 2 Sayfa Aralığı: 110 - 117 Metin Dili: İngilizce DOI: 10.5152/forestist.2020.20025 İndeks Tarihi: 28-09-2021

Evaluation of renewable hybrid barriers in terms of carbon emission with concrete and steel barriers

Öz:
Roadside barriers called as passive safety systems are presently produced from various materials such as steel, concrete, wood, and plastic. Existing roadside barriers have prioritized safety over aesthetics and environmental concerns. To this end, a new environmental barrier-the renewable hybrid barrier (RHB)-has been designed that can fulfill safety requirements as well as add value in terms of aesthetics. Sand is placed inside the barrier, and the barrier’s outer shell is covered by fir timber. A life cycle analysis was completed to ensure the sustainable production of RHBsand to better understand their environmental impacts. The amount of greenhouse gas emitted into nature during the production of RHB and steel and concrete barriers was calculated and compared. Our results showed that concrete and steel barrier production releases approximately 4.5 times more greenhouse gases than RHB production. The live biomass equivalent of the wood materials used in RHB production was also calculated. We found that RHBs sequestrated 45.94 kg-CO2eq. It is thought that more widespread use of RHBs can contribute positively to the environment and nature.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • Demirer, G. N. (2011). Yaşam Döngüsü Analizi. Sürdürülebilir Üretim ve Tüketim Yayınları 40 sf. Available from: https://recturkey.files.wordpress.com/2017/02/yda.pdf
  • Draper, A. M., & Weissburg, M. J. (2019). Impacts of global warming and elevated CO2 on sensory behavior in predator-prey interactions: A review and synthesis. Frontiers in Ecology and Evolution, 7, DOI: 10.3389/fevo.2019.00072. [Crossref]
  • Eggleston, H. S., Buendia, L., Miwa, K., Ngara, T., & Tanabe, K. (2006). IPCC Guidelines for National Greenhouse Gas Inventories. Agriculture, Forestry and Other Land Use. Hayama, 4. Available from: https://www.ipcc-nggip.iges.or.jp/public/2006gl/
  • Ferguson, I., Bren, L., Hateley, R., Hermesec, B., & La Fontaine, B. (1996). Environmental Properties of Timber. Research Paper commissioned by the FWPRDC.
  • Green, M., & Taggart, J. (2017). Tall wood buildings: Design, construction and performance. Tall Wood Buildings: Design, Construction and Performance 1-176. [Crossref]
  • Hitoe, K., Hasegawa, T., Hasegawa, K., Terazawa, K., Yamanaka, K., & Hattori, N. (2013). Case study of life cycle assessment of domestic logs. Mokuzai Gakkaishi, 59, 269-277. [Crossref]
  • IPCC., (2014). Climate Change 2014. In Climate Change 2014: Synthesis Report.
  • Jemai, A., Najar, F., Chafra, M., & Ounaies, Z. (2014). Mathematical Modeling of an Active-Fiber Composite Energy Harvester with Interdigitated Electrodes. Shock and Vibration Article, ID 971597, DOI: 10.1155/2014/971597. [Crossref]
  • Kalaycioglu, H., Deniz, I., & Hiziroglu, S. (2005). Some of the properties of particleboard made from paulownia. Journal of Wood Science, 51(4), 410-414. [Crossref]
  • Kayo, C., Noda, R., Sasaki, T., & Takaoku, S. (2014). Carbon balance in the life cycle of wood: targeting a timber check dam. Journal of Wood Science, 61(1), 70-80. [Crossref]
  • KGM., (2005). Karayolu Tasarım El Kitabı. Karayolları Genel Müdürlüğü.
  • Kocaefe, D., Poncsak, S., & Boluk, Y. (2008). Effect of thermal treatment on the chemical composition and mechanical properties of birch and aspen. BioResources, 3(2), 517-537.
  • Köhl, M., Ehrhart, H. P., Knauf, M., & Neupane, P. R. (2020). A viable indicator approach for assessing sustainable forest management in terms of carbon emissions and removals. Ecological Indicators, 111. [Crossref]
  • Korkut, S., & Kocaefe, D. (2009). Isıl İşlemin Odun Özellikleri Üzerine Etkisi. Düzce Üniveristesi Ormancılık Dergisi, 5(2), 11-34.
  • Lal, R. (2004). Soil carbon sequestration to mitigate climate change. Geoderma, 123(1-2), 1-22. [Crossref]
  • Lee, J., Makineci, E., Tolunay, D., & Son, Y. (2018). Estimating the effect of abandoning coppice management on carbon sequestration by oak forests in Turkey with a modeling approach. Science of the Total Environment, 640-641, 400-405. [Crossref]
  • NASA., (2020). Overview: Weather, Global Warming and Climate Change. Global Climate Change - Vital Sings of the Planet. Available from: https://climate.nasa.gov/resources/global-warming-vs-climate-change/
  • Noble, I., Bolin, B., Ravindranath, N., Verardo, D., & Dokken, D. (2000). Land use, land use change, and forestry. Environmental Conservation, 28(3), 284-293.
  • Noda, R., Kayo, C., Sasaki, T., & Takaoku, S. (2014). Evaluation of CO2 emissions reductions by timber check dams and their economic effectiveness. Journal of Wood Science, 60(6), 461-472. [Crossref]
  • Noda, R., Kayo, C., Yamanouchi, M., & Shibata, N. (2016). Life Cycle Greenhouse Gas Emission of Wooden Guardrails: A Study in Nagano Prefecture. Journal of Wood Science, 62(2), 181-193. [Crossref]
  • Pilia, F., Maltinti, F., & Annunziata, F. (2012). Preliminary Results on a New Safety Road Barrier Made Completely of Wood. Environmental Semeiotics, 5(2), 11-23. [Crossref]
  • Pingoud, K., Pohjola, J., & Valsta, L. (2010). Assessing the integrated climatic impacts of forestry and wood products. Silva Fennica, 44(1), 155-175. [Crossref]
  • Puettmann, M. E., & Lippke, B. (2012). Woody biomass substitution for thermal energy at softwood lumber mills in the US inland Northwest. Forest Products Journal, 62(4), 273-279. [Crossref]
  • Saraçoğlu, N. (2010). Küresel İklim Değişimi, Biyoenerji ve Enerji Ormancılığı. Elif Yayınevi. ISBN: 6054334409 page: 298. Ankara, Türkiye
  • Selin, H., & Mann, M. E. (2020). Global warming. Britannica Retrieved from: https://www.britannica.com/science/global-warming
  • Settele, J., Scholes, R., Betts, R. A., Bunn, S., Leadley, P., Nepstad, D., Overpeck, J., Taboada, M. A., Fischlin, A., Moreno, J. M., Root, T., Musche, M., & Winter, M. (2015). Terrestrial and Inland Water Systems. In Climate Change 2014 Impacts, Adaptation, and Vulnerability.
  • Sofuoğlu, S. D., & Kurtoğlu, A. (2012). A survey for determination of wastage rates at massive wood materials processing. Wood Research, 57(2), 297-308.
  • Sulaiman, C., Abdul-Rahim, A. S., & Ofozor, C. A. (2020). Does wood biomass energy use reduce CO2 emissions in European Union member countries? Evidence from 27 members. Journal of Cleaner Production, 253, 119996. [Crossref]
  • Tunç, A. (2004). Yol Güvenlik Mühendisliği ve Uygulamaları. Asil Yayın Dağıtım. ISBN: 9789758784417, page: 528. Ankara, Türkiye
  • Winchester, N. & Reilly, J. M. (2020). The economic and emissions benefits of engineered wood products in a low-carbon future. Energy Economics, 85, 10. [Crossref]
  • Xu, Y., Ramanathan, V., & Victor, D. G. (2018). Global warming will happen faster than we think. Nature, 564(7734), 30-32. [Crossref]
  • Zhang, Q., Li, Y., Yu, C., Qi, J., Yang, C., Cheng, B., & Liang, S. (2020). Global timber harvest footprints of nations and virtual timber trade flows. Journal of Cleaner Production, 250, 119503. [Crossref]
APA BİRİNCİ E, yorur h, Yumrutas H, Duyar A (2021). Evaluation of renewable hybrid barriers in terms of carbon emission with concrete and steel barriers. , 110 - 117. 10.5152/forestist.2020.20025
Chicago BİRİNCİ Emre,yorur huseyin,Yumrutas Halil İbrahim,Duyar Ahmet Evaluation of renewable hybrid barriers in terms of carbon emission with concrete and steel barriers. (2021): 110 - 117. 10.5152/forestist.2020.20025
MLA BİRİNCİ Emre,yorur huseyin,Yumrutas Halil İbrahim,Duyar Ahmet Evaluation of renewable hybrid barriers in terms of carbon emission with concrete and steel barriers. , 2021, ss.110 - 117. 10.5152/forestist.2020.20025
AMA BİRİNCİ E,yorur h,Yumrutas H,Duyar A Evaluation of renewable hybrid barriers in terms of carbon emission with concrete and steel barriers. . 2021; 110 - 117. 10.5152/forestist.2020.20025
Vancouver BİRİNCİ E,yorur h,Yumrutas H,Duyar A Evaluation of renewable hybrid barriers in terms of carbon emission with concrete and steel barriers. . 2021; 110 - 117. 10.5152/forestist.2020.20025
IEEE BİRİNCİ E,yorur h,Yumrutas H,Duyar A "Evaluation of renewable hybrid barriers in terms of carbon emission with concrete and steel barriers." , ss.110 - 117, 2021. 10.5152/forestist.2020.20025
ISNAD BİRİNCİ, Emre vd. "Evaluation of renewable hybrid barriers in terms of carbon emission with concrete and steel barriers". (2021), 110-117. https://doi.org/10.5152/forestist.2020.20025
APA BİRİNCİ E, yorur h, Yumrutas H, Duyar A (2021). Evaluation of renewable hybrid barriers in terms of carbon emission with concrete and steel barriers. FORESTIST, 71(2), 110 - 117. 10.5152/forestist.2020.20025
Chicago BİRİNCİ Emre,yorur huseyin,Yumrutas Halil İbrahim,Duyar Ahmet Evaluation of renewable hybrid barriers in terms of carbon emission with concrete and steel barriers. FORESTIST 71, no.2 (2021): 110 - 117. 10.5152/forestist.2020.20025
MLA BİRİNCİ Emre,yorur huseyin,Yumrutas Halil İbrahim,Duyar Ahmet Evaluation of renewable hybrid barriers in terms of carbon emission with concrete and steel barriers. FORESTIST, vol.71, no.2, 2021, ss.110 - 117. 10.5152/forestist.2020.20025
AMA BİRİNCİ E,yorur h,Yumrutas H,Duyar A Evaluation of renewable hybrid barriers in terms of carbon emission with concrete and steel barriers. FORESTIST. 2021; 71(2): 110 - 117. 10.5152/forestist.2020.20025
Vancouver BİRİNCİ E,yorur h,Yumrutas H,Duyar A Evaluation of renewable hybrid barriers in terms of carbon emission with concrete and steel barriers. FORESTIST. 2021; 71(2): 110 - 117. 10.5152/forestist.2020.20025
IEEE BİRİNCİ E,yorur h,Yumrutas H,Duyar A "Evaluation of renewable hybrid barriers in terms of carbon emission with concrete and steel barriers." FORESTIST, 71, ss.110 - 117, 2021. 10.5152/forestist.2020.20025
ISNAD BİRİNCİ, Emre vd. "Evaluation of renewable hybrid barriers in terms of carbon emission with concrete and steel barriers". FORESTIST 71/2 (2021), 110-117. https://doi.org/10.5152/forestist.2020.20025