Yıl: 2021 Cilt: 22 Sayı: 1 Sayfa Aralığı: 126 - 133 Metin Dili: Türkçe DOI: 10.17474/artvinofd.768285 İndeks Tarihi: 29-07-2022

Bazı çevresel atıkların ve doğal liflerin kompozitlerde kullanılabilirliği

Öz:
Ekonomik ve çevreye duyarlı kompozit malzemeler üretmek gelişmiş ve gelişmekte olan ülkelerinöncelikleri arasında yer almaktadır. Çevre kirliliğini minimize edecek çalışmalar yapılarak doğalkaynakların daha etkin kullanımını sağlamak mümkündür. Atıkların geri dönüşümü ile ekonomikkazancın yanı sıra sürdürülebilir bir kalkınma hedeflenmektedir. Atık motor yağı, atık bitkisel yağ veatık gazete kâğıdı lifleri de bu kapsama girmektedir. Bu derlemede atıkların kompozitlerde kullanılmasıile hem ülkemize katma değer sağlanacak hem de çevresel açıdan kaliteli ürünlerle iç ve dış piyasadarekabet gücümüzü arttıracak tamamen atıktan üretilmiş bir kompozit üretimi gibi çevresel bir yaklaşımsunulmuştur. Bu çalışma ile atıkların nasıl değerlendirilmesi hususu tartışılarak mevcut problemlerinçözümünü hedefleyen çevre dostu bir ürün kazandırılması zorunluluğu gelecekteki çevreye duyarlıaraştırma çalışmalarına ilgi duyanlara ışık tutacaktır.
Anahtar Kelime: atık yağ doğal lif kompozit

Availability of some environmental wastes and natural fibers in composites

Öz:
It is among the priorities of developed and developing countries to produce economical and environmentally friendly composite materials. It is possible that more efficient use of natural resources is to be ensured by carrying out studies to minimize environmental pollution. A sustainable development is aimed as well as economic gain with the recycling of wastes. Waste motor oil, vegetable oil and newsprint fibers are also included in this scope. In this review, an ecological approach that will provide value to our country and increase our competitiveness in the domestic and foreign markets with environmentally quality products produced by using wastes in composites is presented. With this study, the obligation to acquire an environmentally friendly product that targets the solution of the problems related to wastes assessment will shed light on those interested in future environmentally sensitive research studies.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Derleme Erişim Türü: Erişime Açık
  • Adhikary KB, Pang S, Staiger MP (2008) Dimensional stability and mechanical behaviour of wood-plastic composites based on recycled and virgin high-density polyethylene (HDPE). Composite Part B-Eng 39: 807-815.
  • Animpong MAB, Oduru WO, Koranteng J, Ampomah-Benefo K, BoafaMensah G, Akufo-Kumi K, Tottimeh GO, Amoah JY (2017) Coupling effect of waste automotive engine oil in the preparation of wood reinforced LPDE plastic composites for panels. S Afr J Chem Eng 24: 55-61.
  • Ardekani A, Dehghani A, Al-Maadeed MA, Wahit MU, Hassan A (2014) Mechanical and thermal properties of recycled poly(ethylene terephthalate) reinforced newspaper fiber composites. Fiber Polym 15 (7):1531-1538.
  • Ashori A, Nourbakhsh A (2009) Characteristics of wooden fiber plastic composites made of recycled materials. J Waste Manag 29: 291- 1295.
  • Bajpai PK, Singh I, Madaan J (2012) Joining of natural fiber reinforced composites using microwave energy: experimental and finite element study. Mater Design 35:596–602.
  • Bajracharya R, Bajwa DS, Bajwa SG (2017) Mechanical properties of polylactic acid composites reinforced with cotton gin wate and flax fibers. In:Rd International Conference on natural fibers: Advanced Materials for a Greener World, Braga, Portugal.
  • Biermann U, Bornscheuer Meier MaR, Metzger JO, Schäfer HJ (2011) Oils and fats as renewable raw materials in chemistry, Angew. Chem. int. edn. Wiley, Germany, 50, pp 3854-3871.
  • Biermann U, Friedt W, Lang S, Lühs W, Machmüller G, Metzger JOM, Rüsch gen Klaas, Schäfer HJ, Schneider MP (2000) New syntheses with oils and fats as renewable raw materials for the chemical industry. Angew. Chem. int. edn. Wiley, Germany, 39, pp 2206– 2224.
  • Bolat D, Can Güven E, Gedik K, Kurt Karakuş PB (2016) Yağ sektörü ürün veya atıklarının alternatif yakıt olarak kullanılmasının çevre ve insan sağlığı üzerine etkileri. U Ü Müh Mim Fak Derg 21(1):25-44.
  • Boran S, Kızıltaş A, Kızıltaş EE, Gardner DJ (2016) The comparative study of different mixing methods for microcrystalline cellulose/polyethylene composites. Int Polym Proc 31: 92-103.
  • Campo P, Zhao Y, Suidan MT, Venosa AD, Sorial GA (2007) Biodegradation kinetics and toxicity of vegetable oil triacylglycerols under aerobic conditions. Chemosphere 68:2054- 2062.
  • Chen Y, Yang L, Wu J, Ma L, Finlow DE, Lin S, Song K (2013) Thermal and mechanical properties of epoxy resin toughened with epoxidized soybean oil. J Therm Anal Calorim 113:939-945.
  • Choe E, Min DB (2005) Chemistry and reactions of reactive oxygen species in foods. J Food Sci 70:142-159.
  • Choe E, Min DB (2007) Chemistry of deep-fat frying oils. J Food Sci 72: 77-86.
  • Clemons C (2002) Wood-plastic composites in the United States: The interfacing of two industries. Forest Prod J 52:10-18.
  • David E, Henton PG, Lunt J, Randall J (2005) Natural fibers, biopolymers and biocomposites. In: Amar MM, Mohanty K, Drzal LT(ed), CRC Press, pp. 528-569.
  • Donmez Cavdar A, Boran S. (2016) Doğal liflerin otomotiv sanayinde kullanımı, Kastamonu Univ Orman Fak Derg 16:253-263.
  • Eckert C (2000) Opportunities for natural fibers in plastic composites. In: Proceedings of the progress in wood fibre plastic composites, Toronto, ON.
  • Felice C, Fernandes KK, Danielle L, Coles SR (2017) Epoxy resin blends and composites from waste vegetable oil. Eur Polym J 89:449- 460.
  • Gui MM, Lee KT, Bhatia S (2018) Feasibility of edible oil vs.non-edible oil vs. waste edible oil as biodiesel feedstock, Energy 33:1646- 1653.
  • Gupta B, Revagade N, Hilborn J (2007) Poly(lactic acid) fiber: An overview. Prog Polym Sci 32:455-482.
  • Jin FL, Park SJ (2008) Impact-strength improvement of epoxy resins reinforced with a biodegradable polymer. Mater Sci Eng A 478: 402–405.
  • Karakuş K, Başboğa İH, Mengeloğlu F (2014) Termoplastik polimer kompozitlerin üretilmesinde orman budama atıklarının değerlendirilmesi, In: II. Ulusal Akdeniz Orman ve Çevre Sempozyumu, Isparta, Türkiye, pp 801-807.
  • Kaya S, Yavuz H (1993) Yem ve yem maddelerinde bulunan olumsuzluk faktörleri ve hayvanlara yönelik etkileri:1: Organik nitelikli olumsuzluk faktörleri. A Ü Vet Fak Derg 40(4):586-614.
  • Klyosov AA (2007) Wood-plastic composites, 1st edt. Wiley, New Jersey, pp 1-732.
  • Kulkarni MG, Dalai AK (2006) Waste cooking oil-an economical source for biodiesel: A review. Ind Eng Chem Res 45:2901-2913.
  • La Mantia FP, Morreale M (2011) Green composites: A brief review. Compos Part A Appl Sci Manuf 42: 579–588.
  • Lligadas G, Ronda JC, Galia M, Ca V (2010) Plant oils as platform chemicals for polyurethane synthesis: Current state of the art. Biomacromolecules 2825-2835.
  • Meng X, Chen G, Wang Y (2008) Biodiesel production from waste cooking oil via alkali catalyst and its engine test. Fuel Process Technol 89: 851–857.
  • Miao S, Wang P, Su Z, Zhang S (2014) Vegetable-oil-based polymers as future polymeric biomaterials. Acta Biomater 10:1692-1704.
  • Mitchell J, Vandeperre L, Dvorak R, Kosior E, Tarverdi K, Cheeseman C (2014) Recycling disposable cups into paper plastic composites. Waste Manag 34 (11): 2113-2119.
  • Miyagawa H, Mohanty AK, Misra M, Drzal LT (2004) Thermo-physical and impact properties of epoxy containing epoxidized linseed oil. Macromol Mater Eng 289: 636-641.
  • Miyagawa H, Misra M, Drzal LT, Mohanty AK (2005) Fracture toughness and impact strength of anhydride-cured biobased epoxy. Polym Eng Sci 45: 487-495.
  • Mohanty AK, Wibowo A, Misra M, Drzal LT (2004) Effect of process engineering on the performance of natural fiber reinforced cellulose acetate biocomposites. Composi Part A Appl Sci Manuf 35: 363-370.
  • Mohanty AK, Misra M, Drzal LT (2005) Natural fibers, biopolymers and biocomposites, Boca Ranton, Taylor & Francis, pp.875.
  • Nawar WW (1984) Chemical changes in lipids produced by thermal processing. J Chem Educ 61:299–302.
  • Niedermann P, Szebényi G, Toldy A (2015) Characterization of high glass transition temperature sugar-based epoxy resin composites with jute and carbon fibre reinforcement. Compos Sci Technol 117: 62–68.
  • Oksman K, Skrifvars M, Selin JF (2003) Natural fibers as reinforcement in polylactic acid (PLA) composites. Compos Sci Technol 63: 1317- 1324.
  • Öztürk M (2018) Bitkisel ve hayvansal atık yağlardan biyodizel üretimi. Çevre ve Şehircilik Bakanlığı, pp 1-25.
  • Park SJ, Jin FL, Lee JR (2004) Effect of biodegradable epoxidized castor oil on physicochemical and mechanical properties of epoxy resins. Macromol Chem Phys 205:2048-2054.
  • Paul S, Mittal GS, Chinnan MS (1997) Regulating the use of degraded oil/fat in deep-fat/oil food frying. Crit Rev Food Sci Nutr 37:635- 662.
  • Pesman E, Şahinbaş S (2017) Alkali muamele edilmiş eski gazete kağıdı lifleri ile takviye edilmiş yüksek yoğunluklu polietilen kompozitlerinin fiziksel, mekanik ve termal özellikleri. In:IV. IMCOFE, Rome, pp 293-301.
  • Raghavachar R, Letasi RJ, Kola PV, Chen Z, Massingill JL (1999) Rubbertoughening epoxy thermosets with epoxidized crambe oil. J Am Oil Chem Soc 76: 511-516.
  • Saheb N, Jog JP (1999) Natural fiber polymer composites: A review. Adv Polym Tech 18(4): 351-363.
  • Sailaja RRN, Deepthi MV (2011) Mechanical and thermal properties of compatibilized composites of LDPE and esterified unbleached wood pulp polymer composites. Polym Compos 32 (2):199-209.
  • Salam DA, Naik N, Suidan MT, Venosa AD (2012) Assessment of aquatic toxicity and oxygen depletion during aerobic biodegradation of vegetable oil: Effect of oil loading and mixing regime. Environ Sci Technol 46:2352-2359.
  • Santos PA, Giriolli JC, Amarasekera J, Moraes G (2008) Natural fibers plastic composites in automotive applications. In:SPE Automotive Composites Conference & Exhibition Troy, MI, USA, pp 1-9.
  • Siakeng R, Jawaid M, Ariffin H, Sapuan SM, Asim M, Saba N (2018) Natural fiber reinforced polylactic acid composites: A review. Polym Compos 1-18.
  • Spoljaric S, Genovese A, Shanks RA (2009) Polypropylenemicrocrystalline cellulose composites with enhanced compatibility and properties. Compos Part A Appl Sci Manufac 40:791-799.
  • Tan SG, Chow WS (2010) Biobased epoxidized vegetable oils and ıts greener epoxy blends: A review. Polymer-PlastTechnol Eng 49:1581-1590.
  • Thakur VK, Thakur MK, Yu T, Li Y (2015) Handbook of sustainable polymers: Processing and applications. Pan Stanford, Boca Raton, Florida, pp 1-988.
  • URL-1 (2018) http://webdosya.csb.gov.tr/csb/dokumanlar/egitim0008.pdf. Erişim 11.07. 2020
  • URL-2 (2018) http://cevreonline.com/atik-madeni-yaglar. Erişim 11.07. 2020
  • URL-3 (2018) http://www.gazetevatan.com/ercan-inan-1208998- yazar-yazisi-atik-yaglari-bize-yem-liyorlar-mi-/. Erişim 30.09.2020.
  • URL-4 (2018) https://biruni.tuik.gov.tr/medas/?kn=119&locale=tr. Erişim 11.07. 2020
  • URL-5 (2018) http://www.petder.org.tr/tr-TR/news-detail/son-5- yilda-petder-50000-ton-atik-motor-yagi-topladi/627765/2020. Erişim 11.07. 2020
  • Zhang C, Ding R, Kessler MR (2014) Reduction of epoxidized vegetable oils: A novel method to prepare bio-based polyols for polyurethanes. Macromol Rapid Commun 35:1068-1074.
APA BORAN S (2021). Bazı çevresel atıkların ve doğal liflerin kompozitlerde kullanılabilirliği. , 126 - 133. 10.17474/artvinofd.768285
Chicago BORAN SEVDA Bazı çevresel atıkların ve doğal liflerin kompozitlerde kullanılabilirliği. (2021): 126 - 133. 10.17474/artvinofd.768285
MLA BORAN SEVDA Bazı çevresel atıkların ve doğal liflerin kompozitlerde kullanılabilirliği. , 2021, ss.126 - 133. 10.17474/artvinofd.768285
AMA BORAN S Bazı çevresel atıkların ve doğal liflerin kompozitlerde kullanılabilirliği. . 2021; 126 - 133. 10.17474/artvinofd.768285
Vancouver BORAN S Bazı çevresel atıkların ve doğal liflerin kompozitlerde kullanılabilirliği. . 2021; 126 - 133. 10.17474/artvinofd.768285
IEEE BORAN S "Bazı çevresel atıkların ve doğal liflerin kompozitlerde kullanılabilirliği." , ss.126 - 133, 2021. 10.17474/artvinofd.768285
ISNAD BORAN, SEVDA. "Bazı çevresel atıkların ve doğal liflerin kompozitlerde kullanılabilirliği". (2021), 126-133. https://doi.org/10.17474/artvinofd.768285
APA BORAN S (2021). Bazı çevresel atıkların ve doğal liflerin kompozitlerde kullanılabilirliği. Artvin Çoruh Üniversitesi Orman Fakültesi Dergisi, 22(1), 126 - 133. 10.17474/artvinofd.768285
Chicago BORAN SEVDA Bazı çevresel atıkların ve doğal liflerin kompozitlerde kullanılabilirliği. Artvin Çoruh Üniversitesi Orman Fakültesi Dergisi 22, no.1 (2021): 126 - 133. 10.17474/artvinofd.768285
MLA BORAN SEVDA Bazı çevresel atıkların ve doğal liflerin kompozitlerde kullanılabilirliği. Artvin Çoruh Üniversitesi Orman Fakültesi Dergisi, vol.22, no.1, 2021, ss.126 - 133. 10.17474/artvinofd.768285
AMA BORAN S Bazı çevresel atıkların ve doğal liflerin kompozitlerde kullanılabilirliği. Artvin Çoruh Üniversitesi Orman Fakültesi Dergisi. 2021; 22(1): 126 - 133. 10.17474/artvinofd.768285
Vancouver BORAN S Bazı çevresel atıkların ve doğal liflerin kompozitlerde kullanılabilirliği. Artvin Çoruh Üniversitesi Orman Fakültesi Dergisi. 2021; 22(1): 126 - 133. 10.17474/artvinofd.768285
IEEE BORAN S "Bazı çevresel atıkların ve doğal liflerin kompozitlerde kullanılabilirliği." Artvin Çoruh Üniversitesi Orman Fakültesi Dergisi, 22, ss.126 - 133, 2021. 10.17474/artvinofd.768285
ISNAD BORAN, SEVDA. "Bazı çevresel atıkların ve doğal liflerin kompozitlerde kullanılabilirliği". Artvin Çoruh Üniversitesi Orman Fakültesi Dergisi 22/1 (2021), 126-133. https://doi.org/10.17474/artvinofd.768285