Yıl: 2021 Cilt: 26 Sayı: 2 Sayfa Aralığı: 707 - 722 Metin Dili: İngilizce DOI: 10.17482/uumfd.829930 İndeks Tarihi: 29-07-2022

INFLUENCE OF LINEAR PROFILE MODIFICATIONS ON THE DYNAMIC LOADING OF A SPUR GEAR

Öz:
Gear dynamics is one of the most critical subjects in gear design because of its remarkable effecton vibration levels, load-carrying capacity, and noise. The tip relief modification is known as a simplemethod to decrease dynamic loads in the industry. The primary goal of this study is to understand theinfluence of tip relief modification on the dynamic performance of the spurs gears. In this paper, themeshing process and gear mesh stiffness calculation method are defined. A dynamic model with twodegree-of-freedom is created to find the dynamic response of the spur gear pair. The simulations are carriedout with standard and different tip modified spur gear pairs. It is observed that the tip relief modificationhas an excellent effect on the gear dynamic response. However, this effect is restricted until a certain amountof tip relief modification. After the optimum amount of tip relief modification, the dynamic loads areincreased considerably. Thus, a computer program is developed to find the optimum amount of tip reliefmodification in MATLAB® for the gear designers. The program outputs are given for two different casestudies. As a result of the study, the dynamic factor behaves like a “V form” according to the tip reliefmodification, and the dynamic force decreased approximately 25% for optimum profile modification.
Anahtar Kelime: Spur Gear Gear Dynamics Mesh Stiffness Tip Relief

Doğrusal Profil Modifikasyonlarının Bir Düz Dişli Çarkın Dinamik Yüklenmesi Üzerine Etkisi

Öz:
Dişli dinamiği; titreşim seviyeleri, yük taşıma kapasitesi ve gürültü üzerindeki dikkat çekici etkileri sebebi ile dişli çark tasarımındaki en kritik unsurlardan bir tanesidir. Dişli çark uç modifikasyonu endüstride dişli çarklar üzerindeki dinamik kuvvetleri azaltmak için kullanılan bir yöntem olarak bilinmektedir. Bu çalışmanın amacı; dişli uç modifikasyonunun düz dişli çarkların dinamik performansı üzerindeki etkilerinin anlaşılmasıdır. Bu kapsamda, düz dişli çarkların kavrama sürecine ve kavrama rijitliğinin hesaplamasına yönelik bir yöntem tanımlanmıştır. Dişli çark çiftinin dinamik cevabının bulunması için iki serbestlik dereceli bir dinamik model geliştirilmiştir. Dişli uç modifikasyonun dişli çarkların dinamik performansı üzerindeki etkilerinin incelenmesi için nümerik simülasyonlar hem standart hem de uç modifikasyonu uygulanmış dişli çark çiftleri için gerçekleştirilmiştir. Uç modifikasyonu uygulamasının dişli çarkların dinamik cevabı üzerinde mükemmel bir etkisi olduğu tespit edilmiştir. Ancak, belirtilen bu pozitif etkinin de belirli bir optimum değer ile sınırlı olduğu görülmüştür. Optimum dişli uç modifikasyonu miktarı aşıldıktan sonra dişli çark üzerindeki dinamik yükler ciddi bir şekilde artmaktadır. Bu çalışmada, MATLAB® ortamında dişli çark tasarımcılarının optimum uç modifikasyonu miktarını hesaplamasına olanak sağlayacak bir bilgisayar programı geliştirilmiştir. Program çıktıları iki farklı vaka çalışması için değerlendirilerek sunulmuştur. Sonuç olarak, dinamik faktörün profil modifikasyonu ile birlikte V formda değiştiği ve optimum modifikasyon değerinde yaklaşık olarak %25 azaldığı tespit edilmiştir.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • 1. Alemayehu, F.M. and Ekwaro-Osire, S. (2014) Loading and design parameter uncertainty in the dynamics and performance of high-speed-parallel-helical stage of a wind turbine gearbox, Journal of Mechanical Design, 136(9). https://doi.org/10.1115/1.4027496.
  • 2. Baud, S. and Velex, P. (2002) Static and dynamic tooth load in spur and helical geared systems – experiments and model validation, Journal of Mechanical Design, 124(2), 334 – 346. https://doi.org/10.1115/1.1462044.
  • 3. Ding, F., Tian, Z., Zhao, F. and Xu, H. (2018) An integrated approach for wind turbine gearbox fatigue life prediction considering instantaneously varying load conditions, Renewable Energy, 129, 260 – 270. https://doi.org/10.1016/j.renene.2018.05.074.
  • 4. Frazer, R.C., Shaw, B.A., Palmer, D. and Fish, M. (2010) Application examples from optimizing gear geometry for minimum transmission error, mesh friction losses and scuffing risk through computer-aided engineering, Gear Technology, August.
  • 5. Guerine, A., El-Hami, A., Walha, L., Fakhfakh, T. and Haddar, M. (2017) Dynamic response of wind turbine gear system with uncertain-but-bounded parameters using interval analysis method, Renewable Energy, 113, 679 – 687. https://doi.org/10.1016/j.renene.2017.06.028.
  • 6. Hu, Z., Tang, J., Zhong, J., Chen, S. and Yan, H. (2016) Effects of tooth profile modification on dynamic responses of a high speed gear-rotor-bearing system, Mechanical Systems and Signal Processing, 76(77), 294 – 318. https://doi.org/10.1016/j.ymssp.2016.01.020.
  • 7. Kahraman, A. and Blankenship, G.W. (1999) Effect of involute tip relief on dynamic response of spur gear pairs, Journal of Mechanical Design, 121(2), 313 – 315. https://doi.org/10.1115/1.2829460.
  • 8. Karpat, F., Ekwaro-Osire, S., Cavdar, K. and Babalik, F.C. (2008) Dynamic analysis of involute spur gears with asymmetric teeth, International Journal of Mechanical Sciences, 50(12), 1598 – 1610. https://doi.org/10.1016/j.ijmecsci.2008.10.004.
  • 9. Karpat, F. and Ekwaro-Osire, S. (2008) Influence of tip relief modification on the wear of spur gears with asymmetric teeth, Tribology Transactions, 51(5), 581 – 588. https://doi.org/10.1080/10402000802011703.
  • 10. Karpat, F. and Ekwaro-Osire, S. (2008) Dynamic analysis of high-contact-ratio spur gears with asymmetric teeth, Proceedings of the ASME International Mechanical Engineering Congress and Exposition, Boston, Massachusetts, 285 – 291. https://doi.org/10.1115/IMECE2008-67838.
  • 11. Karpat, F., Dogan, O., Yuce, C. and Ekwaro-Osire, S. (2017) An improved numerical method for the mesh stiffness calculation of spur gears with asymmetric teeth on dynamic load analysis, Advances in Mechanical Engineering, 9(8), 1 – 12. https://doi.org/10.1177/1687814017721856.
  • 12. Karpat, F., Yuce, C., and Dogan, O. (2020) Experimental measurement and numerical validation of single tooth stiffness for involute spur gears, Measurement, 150. https://doi.org/10.1016/j.measurement.2019.107043.
  • 13. Lin, H.H., Huston, R.L. and Coy, J.J. (1990) Dynamic loads in parallel shaft transmissions part 1, Gear Technology, March/April, 25 – 34.
  • 14. Lin, H.H., Huston, R.L. and Coy, J.J. (1990) Dynamic loads in parallel shaft transmissions part 2, Gear Technology, May/June, 8 – 27.
  • 15. Lin, H.H., Oswald, F.B. and Townsend, D.P. (1994) Dynamic loading of spur gears with linear or parabolic tooth profile modifications, Mechanism and Machine Theory, 29(8), 1115 – 1129. https://doi.org/10.1016/0094-114X(94)90003-5.
  • 16. Liou, C.H., Lin, H.H., Oswald, F.B. and Townsend, D.P. (1996) Effect of contact ratio on spur gear dynamic load with no tooth profile modifications. Journal of Mechanical Design, 118(3), 439 – 443. https://doi.org/10.1115/1.2826905.
  • 17. Liu, H., Zhang, C., Xiang, C.L. and Wang, C. (2016) Tooth profile modification based on lateral-torsional-rocking coupled nonlinear dynamic model of gear system, Mechanism and Machine Theory, 105, 606 – 619. https://doi.org/10.1016/j.mechmachtheory.2016.07.013.
  • 18. Marković, K. and Franulović, M. (2011) Contact stresses in gear teeth due to tip relief profile modification, Engineering Review, 31(1), 19 – 26.
  • 19. Marković, K. and Vrcan, Z. (2016) Influence of tip relief modification an involute spur gear stress, Transactions of Famena, 40(2), 59 – 70. https://doi.org/10.21278/TOF.40205.
  • 20. Marques, M.T., Martins, R.C. and Seabra, J.H.O. (2016) Gear dynamics and power loss. Tribology International, 97, 400 – 411. https://doi.org/10.1016/j.triboint.2016.02.002.
  • 21. Ozguven, H.N. (1991) A non-linear mathematical model for dynamic analysis of spur gears including shafts and bearing dynamics, Journal of Sound and Vibration, 145(2), 239 – 260. https://doi.org/10.1016/0022-460X(91)90590-G.
  • 22. Palmer, D. and Fish, M. (2012) Evaluation of methods for calculating effects of tip relief on transmission error, noise and stress in loaded spur gears, Gear Technology, January/February, 56 – 67.
  • 23. Shanmugasundaram, S., Kumaresan, M. and Muthusamy, N. (2014) Effects of pressure angle and tip relief on the life of speed increasing gearbox: A case study, SpringerPlus, 3(1), 1 – 10.
  • 24. Tharmakulasingam, R., Alfano, G. and Atherton, M. (2008) Reduction of gear pair transmission error with tooth profile modification. Proceedings of the ISMA 2008 International Conference on Noise and Vibration Engineering, Leuven, Belgium.
  • 25. Tharmakulasingam, R. (2009) Transmission error in spur gears: Static and dynamic finiteelement modeling and design optimization, Ph.D. Thesis, Brunel University.
  • 26. Wei, S., Zhao, J., Han, Q. and Chu, F. (2015) Dynamic response analysis on torsional vibrations of wind turbine geared transmission system with uncertainty, Renewable Energy, 78, 60 – 67. https://doi.org/10.1016/j.renene.2014.12.062.
  • 27. Yildirim, N. and Munro, R.G. (1999) A systematic approach to profile relief design of low and high contact ratio spur gears, Proceedings of the Institution of Mechanical Engineers Part C, 213(6), 551 – 562. https://doi.org/10.1243/0954406991522482.
  • 28. Yoon, K.Y. and Rao, S.S. (1996) Dynamic load analysis of spur gears using a new tooth profile, Journal of Mechanical Design, 118(1), 1 – 6. https://doi.org/10.1115/1.2826851
APA Doğan O, Kalay O, Karpat F (2021). INFLUENCE OF LINEAR PROFILE MODIFICATIONS ON THE DYNAMIC LOADING OF A SPUR GEAR. , 707 - 722. 10.17482/uumfd.829930
Chicago Doğan Oğuz,Kalay Onur Can,Karpat Fatih INFLUENCE OF LINEAR PROFILE MODIFICATIONS ON THE DYNAMIC LOADING OF A SPUR GEAR. (2021): 707 - 722. 10.17482/uumfd.829930
MLA Doğan Oğuz,Kalay Onur Can,Karpat Fatih INFLUENCE OF LINEAR PROFILE MODIFICATIONS ON THE DYNAMIC LOADING OF A SPUR GEAR. , 2021, ss.707 - 722. 10.17482/uumfd.829930
AMA Doğan O,Kalay O,Karpat F INFLUENCE OF LINEAR PROFILE MODIFICATIONS ON THE DYNAMIC LOADING OF A SPUR GEAR. . 2021; 707 - 722. 10.17482/uumfd.829930
Vancouver Doğan O,Kalay O,Karpat F INFLUENCE OF LINEAR PROFILE MODIFICATIONS ON THE DYNAMIC LOADING OF A SPUR GEAR. . 2021; 707 - 722. 10.17482/uumfd.829930
IEEE Doğan O,Kalay O,Karpat F "INFLUENCE OF LINEAR PROFILE MODIFICATIONS ON THE DYNAMIC LOADING OF A SPUR GEAR." , ss.707 - 722, 2021. 10.17482/uumfd.829930
ISNAD Doğan, Oğuz vd. "INFLUENCE OF LINEAR PROFILE MODIFICATIONS ON THE DYNAMIC LOADING OF A SPUR GEAR". (2021), 707-722. https://doi.org/10.17482/uumfd.829930
APA Doğan O, Kalay O, Karpat F (2021). INFLUENCE OF LINEAR PROFILE MODIFICATIONS ON THE DYNAMIC LOADING OF A SPUR GEAR. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 26(2), 707 - 722. 10.17482/uumfd.829930
Chicago Doğan Oğuz,Kalay Onur Can,Karpat Fatih INFLUENCE OF LINEAR PROFILE MODIFICATIONS ON THE DYNAMIC LOADING OF A SPUR GEAR. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 26, no.2 (2021): 707 - 722. 10.17482/uumfd.829930
MLA Doğan Oğuz,Kalay Onur Can,Karpat Fatih INFLUENCE OF LINEAR PROFILE MODIFICATIONS ON THE DYNAMIC LOADING OF A SPUR GEAR. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, vol.26, no.2, 2021, ss.707 - 722. 10.17482/uumfd.829930
AMA Doğan O,Kalay O,Karpat F INFLUENCE OF LINEAR PROFILE MODIFICATIONS ON THE DYNAMIC LOADING OF A SPUR GEAR. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi. 2021; 26(2): 707 - 722. 10.17482/uumfd.829930
Vancouver Doğan O,Kalay O,Karpat F INFLUENCE OF LINEAR PROFILE MODIFICATIONS ON THE DYNAMIC LOADING OF A SPUR GEAR. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi. 2021; 26(2): 707 - 722. 10.17482/uumfd.829930
IEEE Doğan O,Kalay O,Karpat F "INFLUENCE OF LINEAR PROFILE MODIFICATIONS ON THE DYNAMIC LOADING OF A SPUR GEAR." Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 26, ss.707 - 722, 2021. 10.17482/uumfd.829930
ISNAD Doğan, Oğuz vd. "INFLUENCE OF LINEAR PROFILE MODIFICATIONS ON THE DYNAMIC LOADING OF A SPUR GEAR". Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 26/2 (2021), 707-722. https://doi.org/10.17482/uumfd.829930