Yıl: 2021 Cilt: 27 Sayı: 219 Sayfa Aralığı: 5 - 58 Metin Dili: Türkçe İndeks Tarihi: 07-10-2021

Su altı Araçlarının Manevra Karakteristiklerinin Değerlendirilmesi-I: Manevra Analizlerinde Kullanılan Yaklaşımlar

Öz:
Su altı araçları dalmış, şnorkel ve satıh gibi birbirinden çok farklı operasyonel isterlere sahip çeşitli işletme modlarında kullanılabilirler. Dolayısı ile bu araçların hidrodinamik tasarımının birbiri ile çelişen özelliklerin bir arada sağlanmasını gerektiren bir optimizasyon problemi olarak ele alınması gereklidir. Hidrodinamik tasarım konusunun su altı araçları açısından belki de en kritik yönü manevra probleminin çözülmesidir. Düşey düzlemde sahip oldukları ilave serbestlik dereceleri ile birlikte karakteristik hızları ve akışkan özellikleri nedeniyle baskın viskoz etkilere maruz kalmaları bu problemi daha da zorlayıcı hale getirmektedir. Ayrıca karakteristik geometrik özellikleri (yelken gibi büyük bir takıntıya sahip olmaları gibi) nedeniyle ve/veya operasyon moduna bağlı olarak (şnorkel seyri gibi) oluşan düzlem dışı etkiler ve serbestlik dereceleri arası karşılıklı etkileşimler de probleminin karmaşıklık seviyesini artıran etkenlerdir. Genelde askeri amaçlar için tasarlanıp kullanılmaları nedeniyle su altı araçlarının her şart altında gizliklerini korumaları beklenir. Operasyonları sırasında hidrostatik basınca maruz kalmaları ise bu araçların çalışabilecekleri azami derinliğe bir sınırlandırma getirir. Serbest yüzeyi yarıp gizliliği ihlal etmeme ve ezilme derinliğinin altına inip aracın kaybına neden olmama zorunluluğu aracın manevra karakteristiklerinin yüksek doğrulukla tahminini gerektirir. Literatürde bu karmaşık problemi her bir operasyon modunda istenilen hassasiyet seviyesinde çözebilmek için birçok yöntem geliştirilmiştir. Bu yöntemlerin geliştirilmesi jenerik geometriler, standart manevralar, hesaplama algoritmaları vb. gibi ikincil konularda da bir çok gelişmeyi beraberinde getirmiştir. Bu durum ise toplamda azımsanmayacak miktarda bir literatür oluşmasına sebep olmuştur. Bu çalışmanın amacı hâlihazırda mevcut literatürü sınıflandırmak, her bir kategorideki çalışmalar arasında ilişkileri ve kullanılan yöntemlerin zayıf ve güçlü taraflarını ortaya koymak ve bu yöntemlerle elde edilen önemli sonuçlara değinmektir. Kapsam dahilindeki materyal miktarı göz önüne alındığında; bunun tek bir başlık altında yapılması mümkün değildir. Bu durum sınıflandırmaya konu her bir ana başlığın ayrı bir çalışma halinde bir araya getirilmesini zorunlu hale getirmiştir. Buna göre çalışmanın mevcut birinci bölümü; su altı araçlarının manevra probleminin çözümünde kullanılan yöntemlerin gruplandırılması ve ayrıca jenerik geometriler ve standart manevraların incelenmesine ayrılmıştır. Bu bölümde, dalmış durum şartları altındaki çalışmalar incelenmiştir. Aracın akışkan sınırlarına (serbest su yüzeyi gibi) yakınlığı nedeniyle oluşan sapmalar ise çalışmanın ikinci bölümünde değerlendirilmiştir. Son olarak, yakın zamanda literatürün ağırlıklı olarak hesaplamalı yöntemleri esas alacak şekilde gelişmesi nedeniyle, bu yaklaşımların kendi iç dinamiklerinin incelenmesi çalışmanın üçüncü bölümünde gerçekleştirilecektir.
Anahtar Kelime:

Assessment of the Maneuvering Characteristics of Underwater Vehicles-I: Approaches Used for Maneuvering Analysis

Öz:
Utilizing in various operating modes (such as submerged, snorkeling and surfaced) with diverse operational requirements; the hydrodynamic design of underwater vehicles must be considered as an optimization problem that enforces a balance between conflicting features. Possibly the most critical aspect of the hydrodynamic design process is the solution of maneuvering problem. Together with the additional degrees of freedom in the vertical plane and subjecting to dominant viscous effects due to characteristic velocities and fluid properties, makes the solution of the problem even more challenging. In addition, out−of−plane effects and interactions between degrees of freedom due to characteristic geometric features (existence of a relatively big appendage such as sail) and/or mode of operation (such as snorkeling) increase the level of complexity. Generally designed and used for military purposes, underwater vehicles are expected to maintain their stealth under all circumstances. Moreover, being exposed to hydrostatic pressure during their operations restricts the maximum diving depth. The requirements of not to broach (i.e., violate the stealthiness) and not to dive below the collapse depth (i.e., cause the loss of the vehicle) necessitate a high level of accuracy for the estimation of the maneuvering characteristics of the vehicle. In literature, various methods have been developed to solve this challenging problem at the desired level of accuracy for each operation mode of the vehicle. Development of these methods brought along improvements also in secondary subjects including generic geometries, standard maneuvers, calculation algorithms etc. and led to the formation of a substantial amount of literature. This study aims to classify currently subject and chronological wise scattered literature, reveal the relationships between studies in each category, clarify the weaknesses and strength of the methods used, and mention the significant results obtained using these methods. Considering the amount of material to be covered, it is not possible to achieve above described goals in a single study. This necessitates bringing together each topic as a separate section. Accordingly, the methods −grouped under the subtopics of physical and mathematical approaches− used in solving the maneuvering problem of underwater vehicles together with the generic geometries and standard maneuvers are formed the first section of the study. The assumption of submerged state used in the studies under this section requires examining the deviations caused by the fluid boundaries under a separate title, which constitutes the second section of the study. Finally, due to the recent progress in the literature on computational methods mainly, the formation of the main topic in which the internal dynamics of these methods are examined is inevitable, which constitutes the third section of the study.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • Ahn, S., Choi K.−Y., & Simpson R. (1989). The design and development of a dynamic plunge−pitch−roll model mount. In 27th Aerospace Sciences Meeting. American Institute of Aeronautics and Astronautics. https://doi.org/doi:10.2514/6.1989−48
  • Barros, E. de, Pascoal, A., & Sa, E. de. (2006). Progress Towards a Method for Predicting AUV Derivatives. Proc. IFAC Manoeuvring Control Marine Crafts.
  • Belanger, F. (2019). System Identification of Submarine Motion Dynamics [Presentation]. Mari−Tech Conference, Ottowa, Canada.
  • Bettle, M. (2013). Unsteady Computational Fluid Dynamics Simulations of Six Degrees−of−Freedom Submarine Manoeuvres (Doctoral dissertation, University of New Brunswick, Canada). Retrieved from https://unbscholar.lib.unb.ca/islandora/object/unbscholar%3A9381
  • Bettle, M. C. (2018). Baseline Predictions of BB2 Submarine Hydrodynamics for the NATO AVT−301 Collaborative Exercise (Report No. DRDC−RDDC−2017−R200). Defence Research and Development Canada. Retrieved from https://cradpdf.drdc−rddc.gc.ca/PDFS/unc298/p806272_A1b.pdf
  • Bettle, M. C., Gerber, A. G., & Watt, G. D. (2009). Unsteady Analysis of the Six DOF Motion of a Buoyantly Rising Submarine. Computers and Fluids, 38(9), 1833−1849. https://doi.org/10.1016/j.compfluid.2009.04.003
  • Boger, D., & Dreyer, J. (2006). Prediction of Hydrodynamic Forces and Moments for Underwater Vehicles Using Overset Grids. In 44th AIAA Aerospace Sciences Meeting and Exhibit. American Institute of Aeronautics and Astronautics. https://doi.org/10.2514/6.2006−1148
  • Booth, T. B. (1973). Oscillatory Testing of Ship Models. Journal of Sound and Vibration, 28(4), 687−698. https://doi.org/10.1016/S0022−460X(73)80143−9
  • Brayshaw, I. (1999). Hydrodynamic Coefficients of Underwater Vehicles [Student Report]. Aeronautical and Maritime Research Laboratories, DSTO.
  • Brinati, H., de Conti, M., Szajnbok, M., & Domiciano, V. (2013). First principles applied to submersible maneuvering. In Developments in Maritime Transportation and Exploitation of Sea Resources. https://doi.org/10.1201/b15813−13
  • Burcher, R. K. (1972). Paper 9. Model Testing. Journal Mechanical Engineering Science, 14(7), 62−69. https://doi.org/10.1243/JMES_JOUR_1972_014_064_02
  • Can, M. (2014). Numerical Simulation of Hydrodynamic Planar Motion (Master's thesis, Middle Eastern Techicial University, Ankara, Turkey). Retrieved from http://etd.lib.metu.edu.tr/upload/12617938/index.pdf
  • Cardenas, P., & de Barros, E. A. (2020). Estimation of AUV Hydrodynamic Coefficients Using Analytical and System Identification Approaches. IEEE Journal of Oceanic Engineering, 45(4), 1157−1176. https://doi.org/10.1109/JOE.2019.2930421
  • Carrica, P. M., Kerkvliet, M., Quadvlieg, F., & Martin, J. E. (2016). CFD Simulations and Experiments of a Maneuvering Generic Submarine and Prognosis for Simulation of Near Surface Operation. In Proceedings of the 31st Symposium on Naval Hydrodynamics (pp. 11−16). Monterey, CA.
  • Chase, N. (2012). Simulations of the DARPA Suboff submarine including self−propulsion with the E1619 propeller (Master's thesis, University of Iowa, Iowa City, IA). https://doi.org/10.17077/etd.ypvf3i4w
  • Chase, N., & Carrica, P. M. (2013). Submarine Propeller Computations and Application to Self− Propulsion of DARPA Suboff. Ocean Engineering, 60, 68−80. https://doi.org/10.1016/j.oceaneng.2012.12.029
  • Chase, N., Michael, T., & Carrica, P. M. (2013). Overset Simulation of a Submarine and Propeller in Towed, Self−Propelled and Maneuvering Conditions. International Shipbuilding Progress, 60(1), 171− 205. https://doi.org/10.3233/ISP−130088
  • Coe, R. G., & Neu, W. L. (2011). Vehicle Control in a CFD Environment. In Proceedings of the 2011 Grand Challenges on Modeling and Simulation Conference (pp. 370−374). Vista, CA: Society for Modeling & Simulation International.
  • Coe, R. G. (2013). Improved underwater vehicle control and maneuvering analysis with computational fluid dynamics simulations (Doctoral dissertation, Virginia Tech, Blacksburg, VA). Retrieved from https://vtechworks.lib.vt.edu/handle/10919/23777
  • Coxon, P. J. (1989). System Identification of Submarine Hydrodynamic Coefficients from Simple Full Scale Trials (Master's thesis, Massachusetts Institute of Technology, Cambridge, MA). Retrieved from https://dspace.mit.edu/bitstream/handle/1721.1/14129/23881420− MIT.pdf?sequence=2&isAllowed=y
  • Dantas, J. L. D., Caetano, W. S., Vale, R. T. S., & de Barros, E. A. (2013). Analysis of identification methods applied to free model tests of the Pirajuba AUV. IFAC Proceedings Volumes, 46(33), 185−190, https://doi.org/10.3182/20130918−4−JP−3022.00051
  • De Barros, E. A., Pascoal, A., & De Sa, E. (2008). Investigation of a Method for Predicting AUV Derivatives. Ocean Engineering, 35(16), 1627−1636. https://doi.org/10.1016/j.oceaneng.2008.08.008
  • Delen, C., Sezen, S., & Bal, S. (2017). Computational Investigation of Self Propulsion Performance of DARPA SUBOFF Vehicle. TAMAP Journal of Engineering, 2017.
  • Dong P.G. (1978). Effective mass and damping of submerged structures (Report No. UCRL−5234). University of California, Lawrence Livermore Laboratory, 2, CA.
  • Dubbioso, G., Broglia, R., & Zaghi, S. (2017). CFD Analysis of Turning Abilities of a Submarine Model. Ocean Engineering, 129, 459−479. https://doi.org/10.1016/j.oceaneng.2016.10.046
  • Feldman, J. (1979). DTNSRDC Revised Standard Submarine Equations of Motions (Report No. DTNSRDC/SPD−0393−09). David W. Taylor Naval Ship Research and Developmet Center. Retrieved from https://apps.dtic.mil/dtic/tr/fulltext/u2/a071804.pdf
  • Finck, R. D., & Hoak, D. E. (1978). USAF Stability and Control DATCOM (Report No. AFWAL−TR−83−3048). Flight Dynamics Labaratory, OH.
  • Fossen, T. I. (2011). Handbook of marine craft hydrodynamics and motion control. John Wiley & Sons.
  • Fu, T. C., Atsavapranee, P., & Hess, D. E. (2002). PIV Measurements of Cross−Flow Velocity Field Around a Turning Submarine Model ( ONR Body−1 ) Part 1. Experimental Setup (Report No. NSWCCD−50−TR 2002/019). Carderock Division, Naval Surface Warfare Center. Retrieved from https://apps.dtic.mil/dtic/tr/fulltext/u2/a401545.pdf
  • Furlong, M. E., Hearn, G. E., Veres, S. M., & Rogers, E. (2003). Nonlinear system identification tools applied to the modelling of submarine dynamics. IFAC Proceedings Volumes, 36(4), 49−54. https://doi.org/10.1016/S1474−6670(17)36656−9
  • Gallaway, C. R., & Osborn, R. F. (1985). Aerodynamics Perspective of Supermaneuverability. In 3rd Applied Aerodynamics Conference. American Institute of Aeronautics and Astronautics. https://doi.org/doi:10.2514/6.1985−4068.
  • Gertler, M. (1950). Resistance Experiments On A Systematic Series Of Streamlined Bodies Of Revolution−For Application to the Design Of High−Speed Submarines (Report No. C−297). David Taylor Model Basin. Retrieved from https://apps.dtic.mil/dtic/tr/fulltext/u2/a800144.pdf
  • Gertler, M., & Hagen, G. R. (1967). Standart Equations of Motion For Submarine Simulation. Washington D.C.
  • Goodman, A. (1960). Experimental Techniques and Methods of Analysis Used in Submerged Body Research.
  • Gregory, P. A., Joubert, P. N., & Chong, M. S. (2004). Flow Over a Body of Revolution in a Steady Turn (Report No. DSTO−TR−1591). Defence Science and Technology Organization, Australia. Retrieved from https://apps.dtic.mil/dtic/tr/fulltext/u2/a429701.pdf
  • Grim, O., Oltmann, P., Sharma, S. D., & Wolf, K. (1976). CPMC−A Novel Facility for Planar Motion Testing of Ship Models. In 11th Symposium on Naval Hydrodynamics. London, UK.
  • Groves, N. C., Huang, T. T., & Chang, M. S. (1989). Geometric characteristics of DARPA suboff models (DTRC Model Nos 5470 and 5471) (Report No. DTRC/SHD−1298−01). Ship Hydromechanics Department, David Taylor Research Center. Retrieved from https://apps.dtic.mil/dtic/tr/fulltext/u2/a210642.pdf
  • Han, J. H., Jeong, J. H., Lee S. B., Jang, K. Y., & Lee, S. K. (2017). Dynamic Stability Analysis of a Submarine by Changing Conning Tower Position and Control Planes. Journal of navigation and port research, 41(6), 389−394.
  • Hegrenæs, Ø., Hallingstad, O., & Jalving, B. (2007). Comparison of mathematical models for the HUGIN 4500 AUV based on experimental data. In International Symposium on Underwater Technology and Workshop on Scientific Use of Submarine Cables and Related Technologies (pp. 558−567). IEEE. https://doi.org/10.1109/UT.2007.370776
  • Humphreys, D. E. (1976). Development of Equations of Motion and Transfer Functions for Underwater Vehicles (NCSL 287−76). Naval Coastal Systems Labratory. Retrieved from https://apps.dtic.mil/sti/pdfs/ADA033882.pdf
  • Hydroid, a K. C. (2012). Underwater Mobile Docking of Autonomous Underwater Vehicles. In OCEANS. Hampton, VA. doi: 10.1109/OCEANS.2012.6405109.
  • Ibrahim, M. (2000). A Method for Analysis of the MDTF Data Using Neural Networks (Master's thesis, Memorial University of Newfoundland, Canada). Retrieved from https://research.library.mun.ca/1666/3/Ibrahim_Mohamed.pdf
  • Imlay, F. H. (1961). The Complete Expressions for Added Mass of a Rigid Body Moving in an Ideal Fluid (Report No. 1528). David Taylor Model Basin. Retrieved from https://apps.dtic.mil/dtic/tr/fulltext/u2/263966.pdf
  • Jiang, J., Shi, Y., & Pan, G. (2013). Computation of Hydrodynamic Coefficients of Portable Autonomous Underwater Vehicle. In APCOM & ISCM. Singapore.
  • Johnson, D. C. (1989). A Coning Motion Apparatus for Hydrodynamic Model Testing in a Non−Planar Cross−Flow (Master's thesis, Massachusetts Institute of Technology, Cambridge, MA) Retrieved from https://dspace.mit.edu/handle/1721.1/40552
  • Jones, D. A., Clarke, D. B., Brayshaw, I. . B., Barillon, J. L., & Anderson, B. (2002). The Calculation of Hydrodynamic Coefficients for Underwater Vehicles (Report No. DSTO−TR−1329). Defence Science and Technology Organization, Australia. Retrieved from https://apps.dtic.mil/dtic/tr/fulltext/u2/a414448.pdf
  • Jun, B. H., Park, J. Y., Lee, F. Y., Lee, P. M., Lee, C. M., Kim, K., … Oh, J. H. (2009). Development of the AUV ”ISiMI” and a free running test in an Ocean Engineering Basin. Ocean Engineering, 36(1), 2−14. https://doi.org/10.1016/j.oceaneng.2008.07.009
  • Kim, H., Ranmuthugala, D., Leong, Z. Q., & Chin, C. (2018). Six−DOF Simulations of an Underwater Vehicle Undergoing Straight Line and Steady Turning Manoeuvres. Ocean Engineering, 150, 102−112. https://doi.org/10.1016/j.oceaneng.2017.12.048
  • Kim, H., Leong, Z. Q., Ranmuthugala, D., Chin, C., & Forrest, A. (2015). Free Running Simulation of an Autonomous Underwater Vehicle Undergoing a Straight Line Manoeuvre via Computational Fluid Dynamics. In PACIFIC 2015 International Maritime Conference. Sydney, Australia.
  • Kim, J., Kim, K., Choi, H. S., Seong, W., & Lee, K.−Y. (2002). Estimation of Hydrodynamic Coefficients for an AUV Using Nonlinear Observers. IEEE Journal of Oceanic Engineering, 27(4), 830−840. https://doi.org/10.1109/JOE.2002.805098
  • Kim, K., Turnock, S. R., Ando, J., Becchi, P., Minchev, A., Semionicheva, E. Y., … Korkut, E. (2008). The Maneuvering Committee: final report and recommendations to the 25th ITTC. Proceedings of 25th ITTC, I, 143−208.
  • Lee, G. M., Park, J. Y., Kim, B., Baek, H., Park, S., Shim, H., … Jeong, H. S. (2013). Development of an autonomous underwater vehicle ISiMI6000 for deep−sea observation. Indian Journal of Marine Sciences, 42(8), 1034−1041.
  • Leeuwen, G. van. (1969). Some problems concerning the design of a horizontal oscillator (Report No. 225). Shipbuilding Laboratory, Technological University Delft
  • Lloyd, A. (1983). Progress towards a rational method of predicting submarine manoeuvers. In Royal Institution of Naval Architects symposium on naval submarines. London
  • Luque, J. C. C., Donha, D. C., & de Barros, E. A. (2009). AUV parameter identification. IFAC Proceedings Volumes, 42(18), 72−77. https://doi.org/10.3182/20090916−3−BR−3001.0062
  • Mackay, M. (2003). The Standard Submarine Model: A Survey of Static Hydrodynamic Experiments and Semiempirical Predictions (Report No. TR 2003−079). Defence Research & Development Canada. Retrieved from http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.666.6710&rep=rep1& type=pdf
  • Mackay, M., Williams, C. D., & Derradji−Aouat, A. (2007). Recent Model Submarine Experiments with the MDTF. In 8th Canadian Marine Hydromechanics and Structures Conference. St.John's NL, Canada.
  • Mackay, M. (2004). A Review of Submarine Out−of−Plane Normal Force and Pitching Moment (Report No.TM 2004−135). Defence Research & Development Canada. Retrieved from https://cradpdf.drdc− rddc.gc.ca/PDFS/unc62/p522701.pdf
  • McCarter, B. R. (2014). Experimental evaluation of viscous hydrodynamic force models for autonomous underwater vehicles (Mater's thesis, Virginia Tech, Blacksburg, VA) Retrieved from https://vtechworks.lib.vt.edu/bitstream/handle/10919/50445/McCarter_BR_T_2014.pdf?sequence= 1&isAllowed=y
  • McFarland, C. J., & Whitcomb, L. L. (2013). Comparative experimental evaluation of a new adaptive identifier for underwater vehicles. In 2013 IEEE International Conference on Robotics and Automation (pp. 4614−4620). https://doi.org/10.1109/ICRA.2013.6631233
  • Millan, D., & Thorburn, P. (2010). A Planar Motion Mechanism (PMM) for Ocean Engineering Studies. In NECEC 2010: 18th Newfoundland Electrical and Computer Engineering Conference, St. John's, NL, Canada.
  • Moonesun, M. (2014). Introduction of Iranian hydrodynamic series of submarines (IHSS). Journal of Taiwan Society of Naval Architects and Marine Engineers. 33(3). 155−162.
  • Morrison, A. T., & Yoerger, D. R. (1993). Determination of the hydrodynamic parameters of an underwater vehicle during small scale, nonuniform, 1−dimensional translation. In Proceedings of OCEANS '93 (pp. II277−II282 vol.2). https://doi.org/10.1109/OCEANS.1993.326105
  • Mulvihill, L. P., & Yang, C. I. (2007). Numerical Simulation of Flow Over Fully Appended ONR body−1 with Overset Grid Scheme. In NSH 2007 − 9th International Conference on Numerical Ship Hydrodynamics. Ann Arbor,MI.
  • Myring, D. F. (1981). A Theoretical Study of the Effects of Body Shape and Mach Number on the Drag of Bodies of Revolution in Subcritical Axisymmetric Flow (Report No. 81005). Royal Aircraft Establishment. Retrieved from https://apps.dtic.mil/sti/pdfs/ADA107999.pdf
  • Nahon, M. (1993). Determination of Undersea Vehicle Hydrodynamic Derivatives Using the USAF Datcom. In OCEANS (pp. II283−II288 vol.2). https://doi.org/10.1109/OCEANS.1993.326107
  • Nahon, M. (1996). A Simplified Dynamics Model for Autonomous Underwater Vehicles. In Symposium on Autonomous Underwater Vehicle Technology (pp. 373−379). https://doi.org/10.1109/AUV.1996.532437
  • Overpelt, B. (2014). Innovation in the Hydrodynamic Support for Design of Submarines. In 12th International Naval Engineering Conference and Exhibition (INEC). Amsterdam, Netherlands.
  • Overpelt, B., Nienhuis, B., & Anderson, B. (2015). Free Running Manoeuvring Model Tests On A Modern Generic SSK Class Submarine (BB2). In Pacific International Maritime Conference.
  • Pankajakshan, R., Remotigue, M. G., Taylor, L. K., Jiang, M., Briley, W. R., & Whitfield, D. L. (2002). Validation of Control Surface Induced Submarine Maneuvering Simulations Using UNCLE. In 24th Symposium on Naval Hydrodynamics (pp. 624−639). Fukuoka, Japan: The National Academies Press. https://doi.org/https://doi.org/10.17226/10834
  • Pankajakshan, R., Taylor, L. K., Jiang, M., Remotigue, M. G., Briley, W. R., & Whitfield, D. L. (2000). Parallel Simulations for Control−Surface Induced Submarine Maneuvers. In 38th Aerospace Sciences Meeting Conference and Exhibit (p. 962).. Reno, NV. https://doi.org/https://doi.org/10.2514/6.2000− 962
  • Pankajakshan, R., Taylor, L. K., Sheng, C., Jiang, M., Briley, W. R., & Whitfield, D. L. (2001). Parallel Efficiency in Implicit Multiblock, Multigrid Simulations with Application to Submarine Maneuvering. In 39th Aerospace Sciences Meeting Conference and Exhibit (p. 1093). Reno, NV. https://doi.org/https://doi.org/10.2514/6.2001−1093
  • Park, J.−Y., Kim, N., Rhee, K.−P., Yoon, H. K., Kim, C., Jung, C., … Lee, S. (2015). Study on Coning Motion Test for Submerged Body. Journal of Ocean Engineering and Technology, 29(6), 436−444. https://doi.org/10.5574/ksoe.2015.29.6.436
  • Phillips, A., Furlong, M., & Turnock, S. R. (2016). The use of Computational Fluid Dynamics to Determine the Dynamic Stability of an Autonomous Underwater Vehicle, Paper presented at the 10th Numerical Towing Tank Symposium (NuTTS'07), Hamburg, Germany September 23−25, 2007.
  • Praveen PC, Krishnankutty P. (2013). Study on the effect of body length on the hydrodynamic performance of an axi−symmetric underwater vehicle. Indian J Geo−Mar Sci 42(8):1013−1022
  • Prestero, T. (2001). Development of a six−degree of freedom simulation model for the REMUS autonomous underwater vehicle. In OCEANS (pp. 450−455 vol.1), Honolulu, HI. https://doi.org/10.1109/OCEANS.2001.968766
  • Quadvlieg, B., & Overpelt, F. (2009). Free Running Model Tests Shed Light on the Elusive World of the Submarine (Report No. 95). MARIN. Retrived from https://www.marin.nl/publications/free−running− model−tests−shed−light−on−the−elusive−world−of−the−submarine
  • Racine, B. J., & Paterson, E. G. (2005). CFD−Based Method for Simulation of Marine−Vehicle Maneuvering. In 35th AIAA Fluid Dynamics Conference and Exhibit (p. 4904). Toronto, Canada. https://doi.org/https://doi.org/10.2514/6.2005−4904
  • Renilson, Martin. (2018). “Submarine Hydrodynamics (2nd ed.)“. Springer. https://doi.org/10.3723/ut.33.137
  • Sabet, M. T., Daniali, H. M., Fathi, A., & Alizadeh, E. (2018). Identification of an Autonomous Underwater Vehicle Hydrodynamic Model Using the Extended, Cubature, and Transformed Unscented Kalman Filter. IEEE Journal of Oceanic Engineering, 43(2), 457−467. https://doi.org/10.1109/JOE.2017.2694470
  • Sabet, M. T., Sarhadi, P., & Zarini, M. (2014). Extended and Unscented Kalman filters for parameter estimation of an autonomous underwater vehicle. Ocean Engineering, 91, 329−339. https://doi.org/10.1016/j.oceaneng.2014.09.013
  • Sandman, B. E., & Kelly, J. G. (1974). Systems Identification: Application To Underwater Vehicle Dynamics. Journal of Hydronautics, 8(3), 94−99. https://doi.org/10.2514/3.62985
  • Sen, D. A Study on Sensitivity of Maneuverability Performance on the Hydrodynamic Coefficients for Submerged Bodies. Journal of Ship Research 44(03), 186−196. doi: https://doi.org/10.5957/jsr.2000.44.3.186
  • Severholt, J. (2017). Generic 6−DOF Added Mass Formulation for Arbitrary Underwater Vehicles based on Existing Semi−Empirical Methods (Master's thesis, Royal Institue of Technology, Stockholm, Sweden). Retrieved from http://kth.diva−portal.org/smash/get/diva2:1127931/FULLTEXT01.pdf
  • Sezen, S., Dogrul, A., Delen, C., & Bal, S. (2018). Investigation of Self−Propulsion of DARPA Suboff by RANS Method. Ocean Engineering, 150, 258−271. https://doi.org/10.1016/j.oceaneng.2017.12.051
  • Society of Naval Architects and Marine Engineers (SNAME). (1950). Nomenclature for Treating the Motion of a Submerged Body Through a Fluid (Technical Research Bulletin No. 1−5) SNAME. Retrieved from https://www.itk.ntnu.no/fag/TTK4190/papers/Sname%201950.PDF
  • Society of Naval Architecture and Marine Engineers (SNAME), (1989). “Principles of Naval Architecture Vol III“, SNAME. Sukas, Ö.F., Kınacı, Ö. K., & Bal, Ş., (2017). Gemilerin Manevra Performans Tahminleri için Genel Bir Değerlendirme−I. Gemi ve Deniz Teknolojisi Dergisi, vol.23, 37−75.
  • Taylor, L., Pankajakshan, R., Jiang, M., Sheng, C., Briley, W., Whitfield, D., … Al, E. (1998). Large−Scale Simulations for Maneuvering Submarines and Propulsors. In 29th AIAA, Plasmadynamics and Lasers Conference. Albuquerque, NM. https://doi.org/doi:10.2514/6.1998−2930
  • Techet, A.H. (2005). Hydrodynamics Lecture Notes, MIT. Retrieved from https://ocw.mit.edu/courses/mechanical−engineering/2−016−hydrodynamics−13−012−fall− 2005/download−course−materials/
  • Thune, S. (2015). Simulation of Submarine Manoeuvring (Master's thesis, Royal Institute of Technology, Stockholm, Sweden). Retrieved from http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva− 185028
  • Tiano, A., Sutton, R., Lozowicki, A., & Naeem, W. (2007). Observer Kalman filter identification of an autonomous underwater vehicle. Control Engineering Practice, 15(6), 727−739. https://doi.org/10.1016/j.conengprac.2006.08.004
  • Tinker, S. J. (1982). Identification of submarine dynamics from free model tests. In Admiralty Marine Technology Establishment, UK, Proceedings of the DRG Seminar on Advanced Hydrodynamic Testing Facilities, Session 3, Paper 16, The Netherlands. Paper: P1982−1 Proceedings.
  • Tinker, S. J., Bowman, A. R., & Booth, T. B. (1979). Identifying Submaersible Dynamics from Free Model Experiments. Royal Institution of Naval Architects Supplementary Papers, 121, 191−196.
  • Venkatesan, G., & Clark, W. B. (2007). Submarine Maneuvering Simulations of ONR Body 1. In 26th International Conference on Offshore Mechanics and Arctic Engineering (pp. 697−705). San Diego, CA: ASME. https://doi.org/https://doi.org/10.1115/OMAE2007−29516
  • Wang, Y., Liu, J., Liu, T., Jiang, Z., Tang, Y., & Huang, C. (2019). A Numerical and Experimental Study on the Hull−Propeller Interaction of A Long Range Autonomous Underwater Vehicle. China Ocean Engineering, 33(5), 573−582. https://doi.org/10.1007/s13344−019−0055−z
  • Watt, G. (1988). Estimates for the Added Mass of a Multi−Component Deeply Submerged Vehicle (Report No.88/213). Defence Research and Development Canada. Retrieved from https://apps.dtic.mil/dtic/tr/fulltext/u2/a203234.pdf
  • Watt, G. D. (2007). Modelling and Simulating Unsteady Six Degrees−of−Freedom Submarine Rising Maneuvers (Report No. 2007−008). Defence Research and Development Canada. Retrieved from https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.466.3653&rep=rep1&type=pdf
  • Wetzel, T. G., & Simpson, R. L. (1996). Unsteady Flow Over a 6: 1 Prolate Spheroid (Report No. VPI− AOE−232). Advanced Research Project Agency. Retrieved from https://vtechworks.lib.vt.edu/bitstream/handle/10919/28502/LD5655.V856_1996.W489.pdf?seque nce=1&isAllowed=y
  • Whitfield, C. C. (1999). Steady and Unsteady Force and Moment Data on a DARPA2 (Master's thesis, Virgina Tech, Blacksburg, VA). Retrieved from https://vtechworks.lib.vt.edu/bitstream/handle/10919/34333/thesis.pdf?sequence=1&isAllowed=y
  • Wu, L., Li, Y., Liu, K., Sun, X., Wang, S., Ai, X., … Feng, X. (2020). Hydrodynamic Performance of AUV Free Running Pushed by a Rotating Propeller with Physics−Based Simulations. Ships and Offshore Structures, 1−13. https://doi.org/10.1080/17445302.2020.1786237
  • Yan, K. C., & Wu, L. H. (2007). A Survey on the key technologies for underwater AUV docking. Robot, 29(3), 267−273.
  • Zierke, W. C. (1997). A Physics−Based Means of Computing the Flow Around a Maneuvering Underwater Vehicle (Report No. TR 97−002). Applied Research Laboratory. Retrieved from https://apps.dtic.mil/dtic/tr/fulltext/u2/a322316.pdf
APA KIRIKBAŞ O, KINACI Ö, BAL Ş (2021). Su altı Araçlarının Manevra Karakteristiklerinin Değerlendirilmesi-I: Manevra Analizlerinde Kullanılan Yaklaşımlar. , 5 - 58.
Chicago KIRIKBAŞ OĞUZHAN,KINACI Ömer Kemal,BAL Şakir Su altı Araçlarının Manevra Karakteristiklerinin Değerlendirilmesi-I: Manevra Analizlerinde Kullanılan Yaklaşımlar. (2021): 5 - 58.
MLA KIRIKBAŞ OĞUZHAN,KINACI Ömer Kemal,BAL Şakir Su altı Araçlarının Manevra Karakteristiklerinin Değerlendirilmesi-I: Manevra Analizlerinde Kullanılan Yaklaşımlar. , 2021, ss.5 - 58.
AMA KIRIKBAŞ O,KINACI Ö,BAL Ş Su altı Araçlarının Manevra Karakteristiklerinin Değerlendirilmesi-I: Manevra Analizlerinde Kullanılan Yaklaşımlar. . 2021; 5 - 58.
Vancouver KIRIKBAŞ O,KINACI Ö,BAL Ş Su altı Araçlarının Manevra Karakteristiklerinin Değerlendirilmesi-I: Manevra Analizlerinde Kullanılan Yaklaşımlar. . 2021; 5 - 58.
IEEE KIRIKBAŞ O,KINACI Ö,BAL Ş "Su altı Araçlarının Manevra Karakteristiklerinin Değerlendirilmesi-I: Manevra Analizlerinde Kullanılan Yaklaşımlar." , ss.5 - 58, 2021.
ISNAD KIRIKBAŞ, OĞUZHAN vd. "Su altı Araçlarının Manevra Karakteristiklerinin Değerlendirilmesi-I: Manevra Analizlerinde Kullanılan Yaklaşımlar". (2021), 5-58.
APA KIRIKBAŞ O, KINACI Ö, BAL Ş (2021). Su altı Araçlarının Manevra Karakteristiklerinin Değerlendirilmesi-I: Manevra Analizlerinde Kullanılan Yaklaşımlar. Gemi ve Deniz Teknolojisi, 27(219), 5 - 58.
Chicago KIRIKBAŞ OĞUZHAN,KINACI Ömer Kemal,BAL Şakir Su altı Araçlarının Manevra Karakteristiklerinin Değerlendirilmesi-I: Manevra Analizlerinde Kullanılan Yaklaşımlar. Gemi ve Deniz Teknolojisi 27, no.219 (2021): 5 - 58.
MLA KIRIKBAŞ OĞUZHAN,KINACI Ömer Kemal,BAL Şakir Su altı Araçlarının Manevra Karakteristiklerinin Değerlendirilmesi-I: Manevra Analizlerinde Kullanılan Yaklaşımlar. Gemi ve Deniz Teknolojisi, vol.27, no.219, 2021, ss.5 - 58.
AMA KIRIKBAŞ O,KINACI Ö,BAL Ş Su altı Araçlarının Manevra Karakteristiklerinin Değerlendirilmesi-I: Manevra Analizlerinde Kullanılan Yaklaşımlar. Gemi ve Deniz Teknolojisi. 2021; 27(219): 5 - 58.
Vancouver KIRIKBAŞ O,KINACI Ö,BAL Ş Su altı Araçlarının Manevra Karakteristiklerinin Değerlendirilmesi-I: Manevra Analizlerinde Kullanılan Yaklaşımlar. Gemi ve Deniz Teknolojisi. 2021; 27(219): 5 - 58.
IEEE KIRIKBAŞ O,KINACI Ö,BAL Ş "Su altı Araçlarının Manevra Karakteristiklerinin Değerlendirilmesi-I: Manevra Analizlerinde Kullanılan Yaklaşımlar." Gemi ve Deniz Teknolojisi, 27, ss.5 - 58, 2021.
ISNAD KIRIKBAŞ, OĞUZHAN vd. "Su altı Araçlarının Manevra Karakteristiklerinin Değerlendirilmesi-I: Manevra Analizlerinde Kullanılan Yaklaşımlar". Gemi ve Deniz Teknolojisi 27/219 (2021), 5-58.