Yıl: 2021 Cilt: 5 Sayı: 2 Sayfa Aralığı: 293 - 301 Metin Dili: İngilizce DOI: 10.46519/ij3dptdi.949479 İndeks Tarihi: 29-07-2022

STRENGTHENING EFFECT OF FLOODING IN 3D PRINTED POROUS SOFT ROBOTICS SCAFFOLDS

Öz:
This study aims to design and 3D print porous elements for soft robotic applications and test the stiffness changes when the cavities are filled with liquids. When an elastic element has porous scaffolds, the stiffness can be controlled by filling the cavities with a liquid. A gyroid structure is selected for the design and evaluation of the characteristics of elements. The stiffness of the element in both non-filled and liquid-filled modes is analyzed using FEM simulation Software in two modes where simple support with central loading and compressive uniform loading. A porous test structure is created and tested in these modes for observation of the stiffness change. Employing an FDM printer in this project enabled us to make our thoughts to reality. The results show that liquid-filling can be used as a stiffening method for porous scaffolds in soft robotic applications.
Anahtar Kelime: Soft Robotic Porous Stiffness 3dprinting flexible filament

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • 1. Wallin, T. J., Pikul, J., Shepherd, R. F., “3D printing of soft robotic systems”, Nature Reviews Materials, Vol. 3, Pages 84–100, 2018.
  • 2. Polygerinos, P., Correll, N., Morin, S. A., Mosadegh, B., Onal, C. D., Petersen, K., Cianchetti, M., Tolley, M. T., Shepherd, R. F., “Soft Robotics: Review of Fluid-Driven Intrinsically Soft Devices; Manufacturing, Sensing, Control, and Applications in Human-Robot Interaction”, Advanced Engineering Materials, Vol. 19, Pages 1700016, 2017.
  • 3. Yap, Y. L., Sing, S. L., Yeong, W. Y., “A review of 3D printing processes and materials for soft robotics”, Rapid Prototyping Journal, Vol. 26, Pages 1345–1361, 2020.
  • 4. Gorissen, B., Reynaerts, D., Konishi, S., Yoshida, K., Kim, J.-W., De Volder, M., “Elastic Inflatable Actuators for Soft Robotic Applications”, Advanced Materials, Vol. 29, Pages 1604977, 2017.
  • 5. Stilli, A., Althoefer, K., Wurdemann, H. A., “Soft robotics. Bio-inspired antagonistic stiffening”, in Biosystems and Biorobotics, Pages 207–214, 2018.
  • 6. Coyle, S., Majidi, C., LeDuc, P., Hsia, K. J., “Bio-inspired soft robotics: Material selection, actuation, and design”, Extreme Mechanics Letters, Vol. 22, Pages 51–59, 2018.
  • 7. Kim, S., Laschi, C., Trimmer, B., “Soft robotics: a bioinspired evolution in robotics”, Trends in Biotechnology, Vol. 31, Pages 287–294, 2013.
  • 8. Podroužek, J., Marcon, M., Ninčević, K., Wan-Wendner, R., “Bio-inspired 3D infill patterns for additive manufacturing and structural applications”, Materials, Vol. 12, Pages 1–12, 2019.
  • 9. Bastola, A. K., Rodriguez, N., Behl, M., Soffiatti, P., Rowe, N. P., Lendlein, A., “Cactus-inspired design principles for soft robotics based on 3D printed hydrogel-elastomer systems”, Materials & Design, Vol. 202, Pages 109515, 2021.
  • 10. Li, S., Bai, H., Shepherd, R. F., Zhao, H., “Bio-inspired Design and Additive Manufacturing of Soft Materials, Machines, Robots, and Haptic Interfaces”, Angewandte Chemie International Edition, Vol. 58, Pages 11182–11204, 2019
  • 11. Totuk, O. H., Başak, H., “Biyomimetik Eklemeli İmalat: 4B Basım”, in 2. International Symposium on Industrial Design and Engineering-ISIDE 2017, 2017.
  • 12. Runciman, M., Darzi, A., Mylonas, G. P., “Soft Robotics in Minimally Invasive Surgery”, Soft Robotics, Vol. 6, Pages 423–443, 2019.
  • 13. Arata, J., Fujisawa, Y., Nakadate, R., Kiguchi, K., Harada, K., Mitsuishi, M., Hashizume, M., "Compliant four degree-of-freedom manipulator with locally deformable elastic elements for minimally invasive surgery", 2019 International Conference on Robotics and Automation (ICRA), Pages 2663–2669, IEEE, 2019.
  • 14. Singh, D., Tawk, C., Mutlu, R., Sariyildiz, E., Sencadas, V., Alici, G., “A 3D Printed Soft Force Sensor for Soft Haptics”, in 2020 3rd IEEE International Conference on Soft Robotics (RoboSoft), Pages 458–463, IEEE, 2020.
  • 15. Zhu, Y., Zhang, J., Wu, Q., Chen, M., Huang, G., Zheng, J., Wu, J., “Three-Dimensional Programmable, Reconfigurable, and Recyclable Biomass Soft Actuators Enabled by Designing an Inverse Opal-Mimetic Structure with Exchangeable Interfacial Crosslinks”, ACS Applied Materials & Interfaces, Vol. 12, Pages 15757–15764, 2020.
  • 16. Wang, R., Huang, H., Xu, R., Li, K., Dai, J. S., “Design of a novel simulated ‘soft’ mechanical grasper”, Mechanism and Machine Theory, Vol. 158, 2021.
  • 17. Selvi, Ö., Telli, İ., Totuk, O. H., Mıstıkoğlu, S., “3D Printing Soft Robots Using Low-Cost Consumer 3D Printers”, in 4 th International Congress on 3D Printing (Additive Manufacturing) Technologies and Digital Industry 2019, K. Çetinkaya, B. Duman, K. Özsoy, K. Kayaalp, O. Oral, M. Aydın, Eds. Pages 1016–1021, Antalya, 2019.
  • 18. Donatelli, C. M., Serlin, Z. T., Echols-Jones, P., Scibelli, A. E., Cohen, A., Musca, J.-M., Rozen-Levy, S., Buckingham, D., White, R., Trimmer, B. A., “Soft foam robot with caterpillar-inspired gait regimes for terrestrial locomotion”, in 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Pages 476–481, IEEE, 2017.
  • 19. Somm, L., Hahn, D., Kumar, N., Coros, S., “Expanding Foam as the Material for Fabrication, Prototyping and Experimental Assessment of Low-Cost Soft Robots with Embedded Sensing”, IEEE Robotics and Automation Letters, Vol. 4, Pages 761–768, 2019.
  • 20. Yamada, Y., Nakamura, T., "Actuatable Flexible Large Structure Using a Laminated Foam-based Soft Actuator", 2020 IEEE/SICE International Symposium on System Integration (SII), Pages 74–79, IEEE, 2020.
  • 21. Peters, J., Anvari, B., Chen, C., Lim, Z., Wurdemann, H. A., “Hybrid Fluidic Actuation for a Foam-Based Soft Actuator”, 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Pages 8701–8708, IEEE, 2020.
  • 22. Yamada, Y., “Feasibility Study on Botanical Robotics: Ophiocordyceps-like Biodegradable Laminated Foam-Based Soft Actuators with Germination Ability”, IEEE Robotics and Automation Letters, Vol. 6, Pages 3777–3784, 2021.
  • 23. Kastor, N., Mukherjee, R., Cohen, E., Vikas, V., Trimmer, B. A., White, R. D., “Design and Manufacturing of Tendon-Driven Soft Foam Robots”, Robotica, Vol. 38, Pages 88–105, 2020.
  • 24. Mac Murray, B. C., An, X., Robinson, S. S., van Meerbeek, I. M., O’Brien, K. W., Zhao, H., Shepherd, R. F., “Poroelastic Foams for Simple Fabrication of Complex Soft Robots”, Advanced Materials, Vol. 27, Pages 6334–6340, 2015.
  • 25. Esser, F., Steger, T., Bach, D., Masselter, T., Speck, T., "Development of Novel Foam-Based Soft Robotic Ring Actuators for a Biomimetic Peristaltic Pumping System", Lecture Notes in Computer Science, Pages 138–147, Springer, Cham, 2017
  • 26. Mac Murray, B. C., Futran, C. C., Lee, J., O’Brien, K. W., Amiri Moghadam, A. A., Mosadegh, B., Silberstein, M. N., Min, J. K., Shepherd, R. F., “Compliant Buckled Foam Actuators and Application in PatientSpecific Direct Cardiac Compression”, Soft Robotics, Vol. 5, Pages 99–108, 2018.
  • 27. King, J. P., Bauer, D., Schlagenhauf, C., Chang, K.-H., Moro, D., Pollard, N., Coros, S., “Control of tendondriven soft foam robot hands”, in 2018 IEEE-RAS 18th International Conference on Humanoid Robots (Humanoids), Pages, 1–9, IEEE, 2018.
  • 28. Chen, Q., Zhao, J., Ren, J., Rong, L., Cao, P., Advincula, R. C., “3D Printed Multifunctional, Hyperelastic Silicone Rubber Foam”, Advanced Functional Materials, Vol. 29, 2019.
  • 29. Futran, C. C., Ceron, S., Murray, B. C. Mac, Shepherd, R. F., Petersen, K. H., “Leveraging fluid resistance in soft robots”, in 2018 IEEE International Conference on Soft Robotics (RoboSoft), Pages 473–478, IEEE, 2018.
  • 30. Sutton, L., “The design of soft fluid filled actuators driven by conductive nylon”, B.A.Sc Thesis, Simon Fraser University, Burnaby, 2019.
  • 31. Liu, M., Wu, J., Gan, Y., Hanaor, D. A., Chen, C. Q., “Multiscale modeling of the effective elastic properties of fluid-filled porous materials”, International Journal of Solids and Structures, Vol. 162, Pages 36–44, 2019.
  • 32. Germain, L., Fuentes, C. A., van Vuure, A. W., des Rieux, A., Dupont-Gillain, C., “3D-printed biodegradable gyroid scaffolds for tissue engineering applications”, Materials & Design, Vol. 151, Pages 113–122, 2018.
  • 33. Castillo, E. H. C., Thomas, N., Al-Ketan, O., Rowshan, R., Abu Al-Rub, R. K., Nghiem, L. D., Vigneswaran, S., Arafat, H. A., Naidu, G., “3D printed spacers for organic fouling mitigation in membrane distillation”, Journal of Membrane Science, Vol. 581, Pages 331–343, 2019.
  • 34. Al-Shimmery, A., Mazinani, S., Flynn, J., Chew, J., Mattia, D., “3D printed porous contactors for enhanced oil droplet coalescence”, Journal of Membrane Science, Vol. 590, 2019.
  • 35. Abueidda, D. W., Elhebeary, M., Shiang, C.-S. (Andrew), Pang, S., Abu Al-Rub, R. K., Jasiuk, I. M., “Mechanical properties of 3D printed polymeric Gyroid cellular structures: Experimental and finite element study”, Materials & Design, Vol. 122, Pages 255-267, 2019.
  • 36. Choi, J., Lee, D.-Y., Eo, J.-H., Park, Y.-J., Cho, K.-J., “Tendon-Driven Jamming Mechanism for Configurable Variable Stiffness”, Soft Robotics, Vol. 8, Pages 109–118. 2021.
  • 37. Zhou, J., Chen, Y., Hu, Y., Wang, Z., Li, Y., Gu, G., Liu, Y., “Adaptive Variable Stiffness Particle Phalange for Robust and Durable Robotic Grasping”, Soft Robotics, Vol. 7, Pages 743–757, 2020.
  • 38. Brancadoro, M., Manti, M., Tognarelli, S., Cianchetti, M., "Preliminary experimental study on variable stiffness structures based on fiber jamming for soft robots", 2018 IEEE International Conference on Soft Robotics (RoboSoft), Pages 258–263, IEEE, 2018.
  • 39. Jiang, Y., Chen, D., Liu, C., Li, J., “Chain-Like Granular Jamming: A Novel Stiffness-Programmable Mechanism for Soft Robotics”, Soft Robotics, Vol. 6, Pages 118–132, 2019.
  • 40. Miller-Jackson, T., Sun, Y., Natividad, R., Yeow, C. H., “Tubular Jamming: A Variable Stiffening Method Toward High-Force Applications with Soft Robotic Components”, Soft Robotics, Vol. 6, Pages 468–482, 2019.
  • 41. Zhang, Y., Zhang, N., Hingorani, H., Ding, N., Wang, D., Yuan, C., Zhang, B., Gu, G., Ge, Q., “Fast‐ Response, Stiffness‐Tunable Soft Actuator by Hybrid Multimaterial 3D Printing”, Advanced Functional Materials, Vol. 29, 2019.
  • 42. Manti, M., Cacucciolo, V., Cianchetti, M., “Stiffening in Soft Robotics: A Review of the State of the Art”, IEEE Robotics & Automation Magazine, Vol. 23, Pages 93–106, 2016.
  • 43. Xie, M., Zhu, M., Yang, Z., Okada, S., Kawamura, S., “Flexible self-powered multifunctional sensor for stiffness-tunable soft robotic gripper by multimaterial 3D printing”, Nano Energy, Vol. 79, 2021.
  • 44. Giannaccini, M. E., Xiang, C., Atyabi, A., Theodoridis, T., Nefti-Meziani, S., Davis, S., “Novel Design of a Soft Lightweight Pneumatic Continuum Robot Arm with Decoupled Variable Stiffness and Positioning”, Soft Robotics, Vol. 5, Pages 54–70, 2018.
  • 45. Shahid, Z., Glatman, A. L., Ryu, S. C., “Design of a Soft Composite Finger with Adjustable Joint Stiffness”, Soft Robotics, Vol. 6, Pages 722–732, 2019.
  • 46. Zhu, M., Mori, Y., Wakayama, T., Wada, A., Kawamura, S., “A Fully Multi-Material Three-Dimensional Printed Soft Gripper with Variable Stiffness for Robust Grasping”, Soft Robotics, Vol. 6, Pages 507–519, 2019.
  • 47. Wei, Y., Chen, Y., Ren, T., Chen, Q., Yan, C., Yang, Y., Li, Y., “A Novel, Variable Stiffness Robotic Gripper Based on Integrated Soft Actuating and Particle Jamming”, Soft Robotics, Vol. 3, Pages 134–143, 2016.
  • 48. Santoso, J., Onal, C. D., " An Origami Continuum Robot Capable of Precise Motion Through Torsionally Stiff Body and Smooth Inverse Kinematics", Soft Robotics, 2020.
  • 49. Zhang M., Zheng Y.P., Mak Arthur F.T., "Estimating the effective Young's modulus of soft tissues from indentation tests—nonlinear finite element analysis of effects of friction and large deformation", Medical Engineering & Physics, Vol. 19, Issue 6, Pages 512-517, 1997.
  • 50. Yamada, Y., Taro, N., "Actuatable flexible large structure using a laminated foam-based soft actuator”, 2020 IEEE/SICE International Symposium on System Integration (SII). IEEE, Pages 74-79, 2020.
  • 51.Chen, Q., Zhao, J., Ren, J., Rong, L., Cao, P. F., Advincula, R. C., “3D printed multifunctional, hyperelastic silicone rubber foam”, Advanced Functional Materials, Vol. 29, Issue 23, Pages 1900469, 2019
  • 52. Argiolas, A., Mac Murray, B. C., Van Meerbeek, I., Whitehead, J., Sinibaldi, E., Mazzolai, B., Shepherd, R. F., “Sculpting soft machines”, Soft Robotics, Vol. 3, Issue 3, Pages 101-108, 2016.
APA selvi ö, TOTUK O, Arslan O, MISTIKOGLU S (2021). STRENGTHENING EFFECT OF FLOODING IN 3D PRINTED POROUS SOFT ROBOTICS SCAFFOLDS. , 293 - 301. 10.46519/ij3dptdi.949479
Chicago selvi özgün,TOTUK Onat,Arslan Ozan,MISTIKOGLU SELÇUK STRENGTHENING EFFECT OF FLOODING IN 3D PRINTED POROUS SOFT ROBOTICS SCAFFOLDS. (2021): 293 - 301. 10.46519/ij3dptdi.949479
MLA selvi özgün,TOTUK Onat,Arslan Ozan,MISTIKOGLU SELÇUK STRENGTHENING EFFECT OF FLOODING IN 3D PRINTED POROUS SOFT ROBOTICS SCAFFOLDS. , 2021, ss.293 - 301. 10.46519/ij3dptdi.949479
AMA selvi ö,TOTUK O,Arslan O,MISTIKOGLU S STRENGTHENING EFFECT OF FLOODING IN 3D PRINTED POROUS SOFT ROBOTICS SCAFFOLDS. . 2021; 293 - 301. 10.46519/ij3dptdi.949479
Vancouver selvi ö,TOTUK O,Arslan O,MISTIKOGLU S STRENGTHENING EFFECT OF FLOODING IN 3D PRINTED POROUS SOFT ROBOTICS SCAFFOLDS. . 2021; 293 - 301. 10.46519/ij3dptdi.949479
IEEE selvi ö,TOTUK O,Arslan O,MISTIKOGLU S "STRENGTHENING EFFECT OF FLOODING IN 3D PRINTED POROUS SOFT ROBOTICS SCAFFOLDS." , ss.293 - 301, 2021. 10.46519/ij3dptdi.949479
ISNAD selvi, özgün vd. "STRENGTHENING EFFECT OF FLOODING IN 3D PRINTED POROUS SOFT ROBOTICS SCAFFOLDS". (2021), 293-301. https://doi.org/10.46519/ij3dptdi.949479
APA selvi ö, TOTUK O, Arslan O, MISTIKOGLU S (2021). STRENGTHENING EFFECT OF FLOODING IN 3D PRINTED POROUS SOFT ROBOTICS SCAFFOLDS. International Journal of 3D Printing Technologies and Digital Industry, 5(2), 293 - 301. 10.46519/ij3dptdi.949479
Chicago selvi özgün,TOTUK Onat,Arslan Ozan,MISTIKOGLU SELÇUK STRENGTHENING EFFECT OF FLOODING IN 3D PRINTED POROUS SOFT ROBOTICS SCAFFOLDS. International Journal of 3D Printing Technologies and Digital Industry 5, no.2 (2021): 293 - 301. 10.46519/ij3dptdi.949479
MLA selvi özgün,TOTUK Onat,Arslan Ozan,MISTIKOGLU SELÇUK STRENGTHENING EFFECT OF FLOODING IN 3D PRINTED POROUS SOFT ROBOTICS SCAFFOLDS. International Journal of 3D Printing Technologies and Digital Industry, vol.5, no.2, 2021, ss.293 - 301. 10.46519/ij3dptdi.949479
AMA selvi ö,TOTUK O,Arslan O,MISTIKOGLU S STRENGTHENING EFFECT OF FLOODING IN 3D PRINTED POROUS SOFT ROBOTICS SCAFFOLDS. International Journal of 3D Printing Technologies and Digital Industry. 2021; 5(2): 293 - 301. 10.46519/ij3dptdi.949479
Vancouver selvi ö,TOTUK O,Arslan O,MISTIKOGLU S STRENGTHENING EFFECT OF FLOODING IN 3D PRINTED POROUS SOFT ROBOTICS SCAFFOLDS. International Journal of 3D Printing Technologies and Digital Industry. 2021; 5(2): 293 - 301. 10.46519/ij3dptdi.949479
IEEE selvi ö,TOTUK O,Arslan O,MISTIKOGLU S "STRENGTHENING EFFECT OF FLOODING IN 3D PRINTED POROUS SOFT ROBOTICS SCAFFOLDS." International Journal of 3D Printing Technologies and Digital Industry, 5, ss.293 - 301, 2021. 10.46519/ij3dptdi.949479
ISNAD selvi, özgün vd. "STRENGTHENING EFFECT OF FLOODING IN 3D PRINTED POROUS SOFT ROBOTICS SCAFFOLDS". International Journal of 3D Printing Technologies and Digital Industry 5/2 (2021), 293-301. https://doi.org/10.46519/ij3dptdi.949479