Yıl: 2021 Cilt: 5 Sayı: 2 Sayfa Aralığı: 339 - 352 Metin Dili: Türkçe DOI: 10.46519/ij3dptdi.838281 İndeks Tarihi: 29-07-2022

YENİ NESİL ÜRETİM TEKNOLOJİSİ: FDM İLE EKLEMELİ İMALAT

Öz:
Eklemeli imalat geleneksel malzeme üretim tekniklerine göre sahip olduğu birçok avantaj nedeniyle sonyıllarda hızlı bir şekilde yaygınlaşmaktadır. Bu avantajlardan bazıları, kalıba gerek kalmadan üretimeizin vermesi, gerektiği kadar hammadde kullanılması, kişiye özgü ürün üretimi ve stok maliyetlerininazaltılmasıdır. ISO/ASTM 52900 standardına göre yedi farklı eklemeli imalat teknolojisi mevcuttur.Eklemeli imalat teknolojilerinde metal, polimer, seramik ve mum olmak üzere bu yedi teknolojiyeuygun olarak geliştirilmiş malzemeler kullanılabilmektedir. Polimer esaslı malzemeler söz konusuolduğunda malzeme ekstrüzyonu eklemeli imalat teknolojileri arasında en fazla kullanılandır. Malzemeekstrüzyonu ticari olarak Fused Depositin Modelling (FDM)/Eriyik Yığma Modelleme (EYM) ve FusedFilament Fabrication (FFF) olarak adlandırılmaktadır. EYM teknolojisi başta hızlı prototipleme ve ürüngeliştirme alanlarında olmak üzere, havacılık, otomotiv, beyaz eşya, tekstil, sağlık ve eğitimsektörlerinde yaygın olarak kullanılmaktadır. Özellikle ABS (Acrylonitrile Butadiene Styrene) ve PLA(Polylactic Acid) gibi polimer malzemelerin yanında PEKK (Polyetherketoneketone), PEI(Polyetherimide) ve PPSU (Polyphenylsulfone) gibi polimerlerin de kullanımına izin vermesi nedeniyleEYM teknolojisi üstün özelliklerin tercih edildiği endüstriyel alanlarda da kullanılabilmektedir. Buçalışmada endüstride kullanımı hızla yaygınlaşmakta olan EYM teknolojisi ve uygulama alanlarıhakkında detaylı bilgiler verilmiştir.
Anahtar Kelime: Malzeme Ekstrüzyonu FFF FDM Eklemeli İmalat

NEW GENERATION PRODUCTION TECHNOLOGY: ADDITIVE MANUFACTURING VIA FDM

Öz:
Additive manufacturing has become widespread rapidly in recent years due to its many advantages over conventional material production technologies. Some of these advantages are production without the need for molds, use of the required amount of raw materials, customized production, and reduction of inventory costs. Seven different additive manufacturing technologies are available according the ISO/ASTM 52900 standart. In additive manufacturing technologies, materials developed in accordance with these seven technologies, including metal, polymer, ceramic and wax can be used. In terms of polymer based materials, the most widely used techniwue among additive manufacturing technologies is material extrusion. Material extrusion is commercially called Fused Deposition Modelling (FDM) and Fused Filament Fabrication (FFF). FDM technology is widely used in rapid prototyping and product development, aviation, automotive, white goods, textile, healthcare and education industries. Thanks to the use of polymers such as PEKK (Polyetherketoneketone), PEI (Polyetherimide) and PPSU (Polyphenylsulfone) in addition to common polymers such as ABS (Acrylonitrile Butadiene Styrene) and PLA (Polylactic Acid) FDM Technologies can also be preferred in applications where superior properties are required. In this study, detailed information was given about FDM technology and its application areas, which are rapidly becoming widespread in industry.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Derleme Erişim Türü: Erişime Açık
  • 1. Daminabo, S., et al., Fused deposition modeling-based additive manufacturing (3D printing): techniques for polymer material systems. 2020. 16: p. 100248.
  • 2. Jiang, J., et al., Effect of support on printed properties in fused deposition modelling processes. 2019. 14(4): p. 308-315.
  • 3. Najmon, J.C., S. Raeisi, and A. Tovar, Review of additive manufacturing technologies and applications in the aerospace industry, in Additive manufacturing for the aerospace industry. 2019, Elsevier. p. 7-31.
  • 4. Singh, S. and R.J.R.P.J. Singh, Fused deposition modelling based rapid patterns for investment casting applications: a review. 2016.
  • 5. Durgun, I.J.R.P.J., Sheet metal forming using FDM rapid prototype tool. 2015.
  • 6. Başcı, Ü.G. and Yamanoğlu R., Eklemeli Metal İmalat Teknolojileri İçin Metal Tozu Üretim Yöntemleri in International Maramara Sciences Congress. 2019. p. 219-227.
  • 7. Tofail, S.A., et al., Additive manufacturing: scientific and technological challenges, market uptake and opportunities. 2018. 21(1): p. 22-37.
  • 8. Sathies, T., P. Senthil, and M.J.R.P.J. Anoop, A review on advancements in applications of fused deposition modelling process. 2020.
  • 9. Gasman, L., Additive aerospace considered as a business, in Additive Manufacturing for the Aerospace Industry. 2019, Elsevier. p. 327-340.
  • 10. Wiese, M., S. Thiede, and C.J.A.M. Herrmann, Rapid manufacturing of automotive polymer series parts: A systematic review of processes, materials and challenges. 2020: p. 101582.
  • 11. Smith, M.L. and J.F.J.A.s.e. Jones, Dual‐extrusion 3D printing of anatomical models for education. 2018. 11(1): p. 65-72.
  • 12. Ngo, T.D., et al., Additive manufacturing (3D printing): A review of materials, methods, applications and challenges. 2018. 143: p. 172-196.
  • 13. Dizon, J.R.C., et al., Mechanical characterization of 3D-printed polymers. 2018. 20: p. 44-67.
  • 14. Das, A., et al., Current understanding and challenges in high temperature additive manufacturing of engineering thermoplastic polymers. 2020: p. 101218.
  • 15. Corcione, C.E., et al., Highly loaded hydroxyapatite microsphere/PLA porous scaffolds obtained by fused deposition modelling. 2019. 45(2): p. 2803-2810.
  • 16. Balletti, C., M. Ballarin, and F.J.J.o.C.H. Guerra, 3D printing: State of the art and future perspectives. 2017. 26: p. 172-182.
  • 17. 52900:2017, E.I.A., Additive Manufacturing, in General Principles-Terminology. 2017.
  • 18. Başcı U.G., Yamanoğlu R., Eklemeli Metal İmalat Teknolojileri Ve Uygulama Alanları, in International Maramara Sciences Congress. 2020. p. 307-314.
  • 19. Material Extrusion, in Design for Additive Manufacturing, M. Leary, Editor. 2020, Elsevier. p. 223-268.
  • 20. Chohan, J.S. and R.J.R.P.J. Singh, Pre and post processing techniques to improve surface characteristics of FDM parts: a state of art review and future applications. 2017.
  • 21. Lalehpour, A., C. Janeteas, and A.J.T.I.J.o.A.M.T. Barari, Surface roughness of FDM parts after post-processing with acetone vapor bath smoothing process. 2018. 95(1-4): p. 1505-1520.
  • 22. Kuo, C.C.J.M.u.W., Fabrication of modeling platform for fused deposition modeling using vacuum casting. 2013. 44(11): p. 922-926.
  • 23. Lee, C., et al., Rapid investment casting: direct and indirect approaches via fused deposition modelling. 2004. 23(1-2): p. 93-101.
  • 24. Chua, C.K., C.H. Wong, and W.Y. Yeong, Standards, quality control, and measurement sciences in 3D printing and additive manufacturing. 2017: Academic Press.
  • 25. Long, J., et al., Application of fused deposition modelling (FDM) method of 3D printing in drug delivery. 2017. 23(3): p. 433-439.
  • 26. Chakraborty, S. and M.C.J.C.S. Biswas, 3D printing technology of polymer-fiber composites in textile and fashion industry: a potential roadmap of concept to consumer. 2020: p. 112562.
  • 27. Sun, L.J.L.M. and T.D.f. Activewear, and challenges. 2020: p. 139.
  • 28. Szulżyk-Cieplak, J., et al., 3D printers–new possibilities in education. 2014. 8(24): p. 96--101.
  • 29. Torres, K., et al., Application of rapid prototyping techniques for modelling of anatomical structures in medical training and education. 2011. 70(1): p. 1-4.
APA BAŞÇI Ü, YAMANOĞLU R (2021). YENİ NESİL ÜRETİM TEKNOLOJİSİ: FDM İLE EKLEMELİ İMALAT. , 339 - 352. 10.46519/ij3dptdi.838281
Chicago BAŞÇI Ümit Gencay,YAMANOĞLU RIDVAN YENİ NESİL ÜRETİM TEKNOLOJİSİ: FDM İLE EKLEMELİ İMALAT. (2021): 339 - 352. 10.46519/ij3dptdi.838281
MLA BAŞÇI Ümit Gencay,YAMANOĞLU RIDVAN YENİ NESİL ÜRETİM TEKNOLOJİSİ: FDM İLE EKLEMELİ İMALAT. , 2021, ss.339 - 352. 10.46519/ij3dptdi.838281
AMA BAŞÇI Ü,YAMANOĞLU R YENİ NESİL ÜRETİM TEKNOLOJİSİ: FDM İLE EKLEMELİ İMALAT. . 2021; 339 - 352. 10.46519/ij3dptdi.838281
Vancouver BAŞÇI Ü,YAMANOĞLU R YENİ NESİL ÜRETİM TEKNOLOJİSİ: FDM İLE EKLEMELİ İMALAT. . 2021; 339 - 352. 10.46519/ij3dptdi.838281
IEEE BAŞÇI Ü,YAMANOĞLU R "YENİ NESİL ÜRETİM TEKNOLOJİSİ: FDM İLE EKLEMELİ İMALAT." , ss.339 - 352, 2021. 10.46519/ij3dptdi.838281
ISNAD BAŞÇI, Ümit Gencay - YAMANOĞLU, RIDVAN. "YENİ NESİL ÜRETİM TEKNOLOJİSİ: FDM İLE EKLEMELİ İMALAT". (2021), 339-352. https://doi.org/10.46519/ij3dptdi.838281
APA BAŞÇI Ü, YAMANOĞLU R (2021). YENİ NESİL ÜRETİM TEKNOLOJİSİ: FDM İLE EKLEMELİ İMALAT. International Journal of 3D Printing Technologies and Digital Industry, 5(2), 339 - 352. 10.46519/ij3dptdi.838281
Chicago BAŞÇI Ümit Gencay,YAMANOĞLU RIDVAN YENİ NESİL ÜRETİM TEKNOLOJİSİ: FDM İLE EKLEMELİ İMALAT. International Journal of 3D Printing Technologies and Digital Industry 5, no.2 (2021): 339 - 352. 10.46519/ij3dptdi.838281
MLA BAŞÇI Ümit Gencay,YAMANOĞLU RIDVAN YENİ NESİL ÜRETİM TEKNOLOJİSİ: FDM İLE EKLEMELİ İMALAT. International Journal of 3D Printing Technologies and Digital Industry, vol.5, no.2, 2021, ss.339 - 352. 10.46519/ij3dptdi.838281
AMA BAŞÇI Ü,YAMANOĞLU R YENİ NESİL ÜRETİM TEKNOLOJİSİ: FDM İLE EKLEMELİ İMALAT. International Journal of 3D Printing Technologies and Digital Industry. 2021; 5(2): 339 - 352. 10.46519/ij3dptdi.838281
Vancouver BAŞÇI Ü,YAMANOĞLU R YENİ NESİL ÜRETİM TEKNOLOJİSİ: FDM İLE EKLEMELİ İMALAT. International Journal of 3D Printing Technologies and Digital Industry. 2021; 5(2): 339 - 352. 10.46519/ij3dptdi.838281
IEEE BAŞÇI Ü,YAMANOĞLU R "YENİ NESİL ÜRETİM TEKNOLOJİSİ: FDM İLE EKLEMELİ İMALAT." International Journal of 3D Printing Technologies and Digital Industry, 5, ss.339 - 352, 2021. 10.46519/ij3dptdi.838281
ISNAD BAŞÇI, Ümit Gencay - YAMANOĞLU, RIDVAN. "YENİ NESİL ÜRETİM TEKNOLOJİSİ: FDM İLE EKLEMELİ İMALAT". International Journal of 3D Printing Technologies and Digital Industry 5/2 (2021), 339-352. https://doi.org/10.46519/ij3dptdi.838281