Yıl: 2021 Cilt: 25 Sayı: 2 Sayfa Aralığı: 401 - 409 Metin Dili: Türkçe DOI: 10.19113/sdufenbed.881399 İndeks Tarihi: 29-07-2022

Cyclo(Tyr-Tyr) Dipeptidinin Teorik IR, Raman ve Moleküler Yapı Analizi

Öz:
Bu çalışmada HT-29, Hela ve MCF-7 hücre hatlarına karşı antikanser etkigösteren Cyclo(Tyr-Tyr) dipeptidinin olası en kararlı yedi konformasyonu tirozinaminoasitlerinin χ yan zincir dihedral açılarına bağlı olarak konformasyon analiziyapılarak belirlenmiştir. Konformasyon analizi sonrasında belirlenenkonformasyonlara ait geometrik yapılar, yan zincire ait dihedral açıdaki değişimlerve konformerlerin toplam ve bağıl enerjileri ile bu konformasyonların toplamenerjilerine katkı sağlayan van der Waals, elektrostatik, torsiyon enerji katkılarıayrı ayrı hesaplanmıştır. Konformasyon analizi ile belirlenen en kararlı konformer,Gaussian03 programı kullanılarak, DFT (Density Functional Teory), B3LYPfonksiyoneli ve 6-31++G(d,p) baz seti ile optimize edilmiş ve optimize yapınıntemel titreşim dalga sayıları aynı teori düzeyinde hesaplanmıştır. Ayrıca, IRşiddetleri, Raman aktiviteleri, potansiyel enerji dağılımları MOLVIB programıkullanılarak saptanmış, Simirra programı ile ölçeklendirilmiş Raman aktiviteleri,Raman şiddetlerine dönüştürülmüştür. Ek olarak bu dipeptidin dimerik formuoluşturulmuş ve DFT/B3LYP/6-31G(d,p) teori düzeyinde optimize edilerek halkayapıya ait w, φ, Ψ dihedral açıları monomer form ile karşılaştırmalı olarakverilmiştir. Dimerik yapının oluşumunda rol oynayan moleküller arası hidrojenbağları belirlenmiştir.
Anahtar Kelime: Dipeptit Diketopiperazin Cyclo(Tyr-Tyr) Konformasyon Analizi Moleküler Modelleme

Theoretical IR, Raman and Molecular Structure Analysis of Cyclo (Tyr-Tyr) Dipeptide

Öz:
In this study, the most stable seven conformations of the Cyclo (Tyr-Tyr) dipeptide, which shows anticancer effect against HT-29, Hela, and MCF-7 cell lines, were determined by conformational analysis based on χ side-chain dihedral angles of the two tyrosine amino acids. The geometric structures of the conformations, determined after the conformation analysis, the changes in the dihedral angle of the side-chain, the total and relative energies of the conformers, and the van der Waals, electrostatic and torsion energy contributions, that contribute to the total energies, were calculated separately. The most stable conformer, determined by conformation analysis, was then optimized using density functional theory (DFT), B3LYP functional and the 6-31++G(d,p) basis set by using Gaussian03 program, and the fundamental vibrational wavenumbers of the optimized structure were calculated at the same level of theory. In addition, IR intensities, Raman activities, potential energy distributions were determined using the MOLVIB program, and the scaled Raman activities scaled were transformed into Raman intensities by Simirra program. Furthermore, the dimeric form of the dipeptide was created and optimized at the DFT/B3LYP/6-31G(d,p) level of theory. The w, φ, Ψ dihedral angles of the ring structure were given comparatively with the monomer form calculated with the same basis sets. The intermolecular hydrogen bonds that play role in the formation of the dimeric structure have been determined.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • [1] Uthuppan, J., Soni, K. 2013. Conformational analysis: a review. International Journal of Pharmaceutical Sciences and Research, 4(1), 34- 41.
  • [2] Udenfriend, S., Meienhofer, J., Hruby, V. J. 2014. Conformation in Biology and Drug Design: The Peptides: Analysis, Synthesis, Biology, 7, Elsevier.
  • [3] Ström, K., Sjögren, J., Broberg, A., Schnürer, J. 2002. Lactobacillus plantarum MiLAB 393 produces the antifungal cyclic dipeptides cyclo (L-Phe-L-Pro) and cyclo (L-Phe-trans-4-OH-LPro) and 3-phenyllactic acid. Applied and Environmental Microbiology, 68(9), 4322-4327.
  • [4] Yamazaki, T., Nunami, K. I., Goodman, M. 1991. Cyclic retro–inverso dipeptides with two aromatic side chains. II. Conformational analysis. Biopolymers: Original Research on Biomolecules, 31(13), 1513-1528.
  • [5] Ovchinnikov, Y. A., Ivanov, V. T. 1982. The Proteins. ss 307-642. Neurath, H., Hill, R. L. ed. 1982. Academic Press, New York.
  • [6] Karanam, G., Arumugam, M. K. 2020. Reactive oxygen species generation and mitochondrial dysfunction for the initiation of apoptotic cell death in human hepatocellular carcinoma HepG2 cells by a cyclic dipeptide Cyclo (-ProTyr). Molecular Biology Reports, 47(5), 3347- 3359.
  • [7] Zainullina, L. F., Ivanova, T. V., Gudasheva, T. A., Vakhitova, Y. V., Seredenin, S. B. 2020. Effect of Neuropeptide Cyclo-L-Prolylglycine on Cell Proliferative Activity. Bulletin of Experimental Biology and Medicine, 169(3), 347-350.
  • [8] Şimşek, A., Kılıç, B. 2016. Et kaynaklı biyoaktif peptitler ve fonksiyonel özellikleri. Gıda, 41(4), 267-274.
  • [9] Gao, X., Li, X., Yan, P., Sun, R., Kan, G., Zhou, Y. 2018. Identification and functional mechanism of novel angiotensin I converting enzyme inhibitory dipeptides from Xerocomus badius cultured in shrimp processing waste medium. BioMed Research International, ID: 5089270.
  • [10] Wu, H., He, H. L., Chen, X. L., Sun, C. Y., Zhang, Y. Z., Zhou, B. C. 2008. Purification and identification of novel angiotensin-I-converting enzyme inhibitory peptides from shark meat hydrolysate. Process Biochemistry, 43(4), 457- 461.
  • [11] Nakashima, Y., Arihara, K., Sasaki, A., Mio, H., Ishikawa, S., Itoh, M. 2002. Antihypertensive activities of peptides derived from porcine skeletal muscle myosin in spontaneously hypertensive rats. Journal of Food Science, 67(1), 434-437.
  • [12] Lee, S. H., Qian, Z. J., Kim, S. K. 2010. A novel angiotensin I converting enzyme inhibitory peptide from tuna frame protein hydrolysate and its antihypertensive effect in spontaneously hypertensive rats. Food Chemistry, 118(1), 96- 102.
  • [13] de la Torre, B. G., Albericio, F. 2020. Peptide Therapeutics 2.0. Molecules, 25(10), 2293.
  • [14] Kilian, G., Jamie, H., Brauns, S. C. A., Dyason, K., Milne, P. J. 2005. Biological activity of selected tyrosine-containing 2,5-diketopiperazines. Die Pharmazie-An International Journal of Pharmaceutical Sciences, 60(4), 305-309.
  • [15] Rajput, S., McLean, K. J., Poddar, H., Selvam, I. R., Nagalingam, G., Triccas, J. A., Levy, C. W., Munro, A. W., Hutton, C. A. 2019. Structure–activity relationships of cyclo (L-tyrosyl-L-tyrosine) derivatives binding to Mycobacterium tuberculosis CYP121: iodinated analogues promote shift to high-spin adduct. Journal of Medicinal Chemistry, 62(21), 9792-9805.
  • [16] IUPAC-IUB. 1971. Commission on Biochemical Nomenclature, Biochim. Biochimica et Biophysica Acta, 121.
  • [17] Maksumov, I. S., Ismailova, L. I., Godjaev, N. M. 1983. The program for semiempirical calculation of conformations of the molecular complexes. Journal of Structural Chemistry, 24(4), 647-648.
  • [18] Popov, E. M. 1985. An approach to the problem of the structuro-functional organization of natural peptides. Molekuliarnaia Biologiia, 19(4), 1107-1138.
  • [19] Popov, E. M., Godjaev, N. M., Ismailova, L. I., Musaev, S. M., Aliev, R. E., Akhmedov, N. A., Maksumov, I. S. 1982. A-Priori calculation of spatial structure of bovine pancreatic trypsininhibitor. Bioorganicheskaya Khimiya, 8(6), 776- 816.
  • [20] Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Replogle, J. A. 2003. Software for Computational Chemistry; Gaussian Inc.: Pittsburgh, PA, USA.
  • [21] Becke, A. D. 1993. Density-functional thermochemistry, III. The role ofexact exchange. The Journal of Chemical Physics, 98(7), 5648– 5652.
  • [22] Sundius, T. 1990. Molvib –A flexible program for force field calculations. Journal of Molecular Structure, 218, 321–326.
  • [23] Sundius, T. 2002. Scaling of ab initio force fields by MOLVIB. Vibrational Spectroscopy, 29, 89–95.
  • [24] Istvan, K. 2002. Simirra, A program for simulation of IR and Raman Spectra. Chemical Research Center.,Budapeşte.
  • [25] Corey, R. B. 1938. The crystal structure of diketopiperazine. Journal of the American Chemical Society, 60(7), 1598-1604.
  • [26] Degeilh, R., Marsh, R. E. 1959. A refinement of the crystal structure of diketopiperazine (2,5- piperazinedione). Acta Crystallographica, 12(12), 1007-1014.
  • [27] Dorset, D. L. 2010. Direct methods and refinement in electron and X-ray crystallography–diketopiperazine revisited. Zeitschrift für Kristallographie International Journal for Structural, Physical, and Chemical Aspects of Crystalline Materials, 225(2-3), 86- 93.
  • [28] Mendham, A. P., Dines, T. J., Snowden, M. J., Withnall, R., Chowdhry, B. Z. 2009. IR/Raman spectroscopy and DFT calculations of cyclic diamino acid peptides. Part III: Comparison of solid state and solution structures of cyclo (LSer-L-Ser). Journal of Raman Spectroscopy, 40(11), 1508-1520.
  • [29] Celik, S., Yilmaz, G., Ozel, A. E., Akyuz, S. 2020. Structural and spectral analysis of anticancer active cyclo (Ala–His) dipeptide. Journal of Biomolecular Structure and Dynamics, 1-13.
  • [30] Celik, S., Ozel, A. E., Akyuz, S. 2016. Comparative study of antitumor active cyclo (Gly-Leu) dipeptide: a computational and molecular modeling study. Vibrational Spectroscopy, 83, 57-69.
  • [31] Mendham, A. P., Dines, T. J., Snowden, M. J., Chowdhry, B. Z., Withnall, R. 2009. Vibrational spectroscopy and DFT calculations of diaminoacid cyclic peptides. Part I: Cyclo(Gly–Gly), cyclo(L-Ala–L-Ala) and cyclo(L-Ala–Gly) in the solid state and in aqueous solution. Journal of Raman Spectroscopy, 40(11), 1478–1497.
APA ÇELİK S, Akyuz S, OZEL A (2021). Cyclo(Tyr-Tyr) Dipeptidinin Teorik IR, Raman ve Moleküler Yapı Analizi. , 401 - 409. 10.19113/sdufenbed.881399
Chicago ÇELİK Sefa,Akyuz Sevim,OZEL AYSEN Cyclo(Tyr-Tyr) Dipeptidinin Teorik IR, Raman ve Moleküler Yapı Analizi. (2021): 401 - 409. 10.19113/sdufenbed.881399
MLA ÇELİK Sefa,Akyuz Sevim,OZEL AYSEN Cyclo(Tyr-Tyr) Dipeptidinin Teorik IR, Raman ve Moleküler Yapı Analizi. , 2021, ss.401 - 409. 10.19113/sdufenbed.881399
AMA ÇELİK S,Akyuz S,OZEL A Cyclo(Tyr-Tyr) Dipeptidinin Teorik IR, Raman ve Moleküler Yapı Analizi. . 2021; 401 - 409. 10.19113/sdufenbed.881399
Vancouver ÇELİK S,Akyuz S,OZEL A Cyclo(Tyr-Tyr) Dipeptidinin Teorik IR, Raman ve Moleküler Yapı Analizi. . 2021; 401 - 409. 10.19113/sdufenbed.881399
IEEE ÇELİK S,Akyuz S,OZEL A "Cyclo(Tyr-Tyr) Dipeptidinin Teorik IR, Raman ve Moleküler Yapı Analizi." , ss.401 - 409, 2021. 10.19113/sdufenbed.881399
ISNAD ÇELİK, Sefa vd. "Cyclo(Tyr-Tyr) Dipeptidinin Teorik IR, Raman ve Moleküler Yapı Analizi". (2021), 401-409. https://doi.org/10.19113/sdufenbed.881399
APA ÇELİK S, Akyuz S, OZEL A (2021). Cyclo(Tyr-Tyr) Dipeptidinin Teorik IR, Raman ve Moleküler Yapı Analizi. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 25(2), 401 - 409. 10.19113/sdufenbed.881399
Chicago ÇELİK Sefa,Akyuz Sevim,OZEL AYSEN Cyclo(Tyr-Tyr) Dipeptidinin Teorik IR, Raman ve Moleküler Yapı Analizi. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 25, no.2 (2021): 401 - 409. 10.19113/sdufenbed.881399
MLA ÇELİK Sefa,Akyuz Sevim,OZEL AYSEN Cyclo(Tyr-Tyr) Dipeptidinin Teorik IR, Raman ve Moleküler Yapı Analizi. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol.25, no.2, 2021, ss.401 - 409. 10.19113/sdufenbed.881399
AMA ÇELİK S,Akyuz S,OZEL A Cyclo(Tyr-Tyr) Dipeptidinin Teorik IR, Raman ve Moleküler Yapı Analizi. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi. 2021; 25(2): 401 - 409. 10.19113/sdufenbed.881399
Vancouver ÇELİK S,Akyuz S,OZEL A Cyclo(Tyr-Tyr) Dipeptidinin Teorik IR, Raman ve Moleküler Yapı Analizi. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi. 2021; 25(2): 401 - 409. 10.19113/sdufenbed.881399
IEEE ÇELİK S,Akyuz S,OZEL A "Cyclo(Tyr-Tyr) Dipeptidinin Teorik IR, Raman ve Moleküler Yapı Analizi." Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 25, ss.401 - 409, 2021. 10.19113/sdufenbed.881399
ISNAD ÇELİK, Sefa vd. "Cyclo(Tyr-Tyr) Dipeptidinin Teorik IR, Raman ve Moleküler Yapı Analizi". Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 25/2 (2021), 401-409. https://doi.org/10.19113/sdufenbed.881399