Yıl: 2021 Cilt: 9 Sayı: 1 Sayfa Aralığı: 106 - 121 Metin Dili: İngilizce DOI: 10.36306/konjes.767269 İndeks Tarihi: 16-09-2021

FABRICATION OF UNDERCOOLED BISMUTH TIN LIQUID METAL PARTICLES WITH HIGH YIELD

Öz:
Despite increasing attention to the liquid metals, most of the studies in this field havefocused on the gallium-based alloys due to their low melting points. The examples of metastableundercooled liquid metal particles are rare due to the thermodynamic challenges in achieving significantlevel of undercooling. In this study, the fabrication of undercooled bismuth-tin (BiSn) liquid metal micro-/nano-particles at eutectic composition was studied. The droplet emulsion technique was used for particleformation in broad size range. The effects of the particle size and the shell formation reactions on the yieldof undercooled particles were investigated. The fabricated particles were characterized using backscattered scanning electron microscopy (BSE-SEM) and differential scanning calorimetry (DSC). Theparticle size distribution and the ratio of undercooled particles were statistically analyzed. Optimizationof the processing conditions and the successful selection of oxidants enabled undercooling of BiSn liquidmetal particles. In doing so, both micro- and nano-size particles could be fabricated with high yield (≥97%). The crystallization temperature was measured to be 0.37 Tm and the particles could preserve theirliquid state at room temperatures for months.
Anahtar Kelime:

Aşırı Soğumuş Bizmut Kalay Sıvı Metal Parçacıklarının Yüksek Verimle Üretimi

Öz:
Sıvı metallere artan ilgiye rağmen, bu alandaki çalışmaların çoğu düşük erime noktaları nedeniyle galyum bazlı alaşımlara odaklanmıştır. Yarı-kararlı aşırı-soğumuş sıvı metal parçacık örnekleri yüksek seviyelerde aşırı-soğuma elde edilmesindeki termodinamik zorluklardan ötürü oldukça nadirdir. Bu çalışmada, ötektik kompozisyonda aşırı-soğumuş bizmut kalay (BiSn) sıvı metal mikron/nano parçacıklarının üretimi incelenmiştir. Geniş boyut aralığında parçacık üretimi için damlacık emülsiyon tekniği kullanılmıştır. Parçacık boyutu ve kılıf oluşum tepkimelerinin aşırı-soğumuş parçacık verimi üzerindeki etkileri araştırılmıştır. Üretilen parçacıklar geri saçılımlı taramalı elektron mikroskobu (BSESEM) ve diferansiyel taramalı kalorimetri (DSC) kullanılarak analiz edilmiştir. Parçacık boyut dağılımı ve aşırı-soğumuş parçacık oranı istatistiksel olarak karakterize edilmiştir. Üretim koşullarının optimizasyonu ve başarılı oksidan seçimi BiSn sıvı metal parçacıklarının aşırı-soğutulmasını sağladı. Bunu yaparken hem mikro hem de nano boyutlu parçacıklar yüksek verimle (≥ 97%) üretilebildi. Kristalleşme sıcaklığı 0.37 Te olarak ölçüldü ve parçacıklar sıvı hallerini oda sıcaklığında aylarca koruyabildiler.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • Allioux, Francois-Marie, Salma Merhebi, Mohammad B Ghasemian, Jianbo Tang, Andrea Merenda, Roozbeh Abbasi, Mohannad Mayyas, et al. 2020. “Bi−Sn Catalytic Foam Governed by Nanometallurgy of Liquid Metals.” Nano Letters 20 (6): 4403–9.
  • Bogatyrenko, S. I., A. A. Minenkov, and A. P. Kryshtal. 2018. “Supercooling under Crystallization of BiSn Eutectic Alloy in Contact with Bi, Sn and Amorphous C.” Vacuum 152 (June): 1–7.
  • Chang, Boyce S., Brijith Thomas, Jiahao Chen, Ian D. Tevis, Paul Karanja, Simge Çinar, Amrit Venkatesh, Aaron J. Rossini, and Martin M. Thuo. 2019. “Ambient Synthesis of Nanomaterials by: In Situ Heterogeneous Metal/Ligand Reactions.” Nanoscale 11 (29): 14060–69.
  • Chang, Boyce S., Ravi Tutika, Joel Cutinho, Stephanie Oyola-Reynoso, Jiahao Chen, Michael D. Bartlett, and Martin M. Thuo. 2018. “Mechanically Triggered Composite Stiffness Tuning through Thermodynamic Relaxation (ST3R).” Materials Horizons 5 (3): 416–22.
  • Chen, Sen, Hong Zhang Wang, Rui Qi Zhao, Wei Rao, and Jing Liu. 2020. “Liquid Metal Composites.” Matter 2 (6): 1446–80.
  • Çınar, Simge, Ian D. Tevis, Jiahao Chen, and Martin Thuo. 2016. “Mechanical Fracturing of Core-Shell Undercooled Metal Particles for Heat-Free Soldering.” Scientific Reports 6 (1): 1–12.
  • Daeneke, T, K Khoshmanesh, N Mahmood, I A De Castro, D Esrafilzadeh, S J Barrow, M D Dickey, and K Kalantar-Zadeh. 2018. “Liquid Metals: Fundamentals and Applications in Chemistry.” Chem. Soc. Rev 47: 4073.
  • Ding, Yu, Xuelin Guo, Yumin Qian, Leigang Xue, Andrei Dolocan, and Guihua Yu. 2020. “Room‐ Temperature All‐Liquid‐Metal Batteries Based on Fusible Alloys with Regulated Interfacial Chemistry and Wetting.” Advanced Materials, 2002577.
  • Felton, Lawrence E., Christopher H. Raeder, and David B. Knorr. 1993. “The Properties of Tin-Bismuth Alloy Solders.” JOM 45 (7): 28–32.
  • Firdaus, W, B Soegijono, A Sudarmadji, and A D Trisnadi. 2020. “Characterization of Bismuth in Sn-Based as Safe Environment Solder Material.” AIP Conference Proceedings 2242: 20011.
  • Frongia, F., M. Pilloni, A. Scano, A. Ardu, C. Cannas, A. Musinu, G. Borzone, S. Delsante, R. Novakovic, and G. Ennas. 2015. “Synthesis and Melting Behaviour of Bi, Sn and Sn–Bi Nanostructured Alloy.” Journal of Alloys and Compounds 623 (February): 7–14.
  • Gong, Mengqi, Jun Shen, Ping Nee, and Dan Hu. 2020. “Preparation of Sn-58Bi Solder Powder by Shearing Liquids into Complex Particles.” Journal of Materials Science: Materials in Electronics 31: 5647–52.
  • Greer, A. Lindsay. 2010. “Materials Science: A Cloak of Liquidity.” Nature 464 (7292): 1137–38.
  • Herlach, D. M., R. F. Cochrane, I. Egry, H. J. Fecht, and A. L. Greer. 1993. “Containerless Processing in the Study of Metallic Melts and Their Solidification.” International Materials Reviews 38 (6): 273–347.
  • Herlach, D M. 1991. “Containerless Undercooling and Solidification of Pure Metals.” Annual Review of Materials Science 21 (1): 23–44.
  • Idrus-Saidi, Shuhada A, Jianbo Tang, Jiong Yang, Jialuo Han, Torben Daeneke, Anthony P O’mullane, and Kourosh Kalantar-Zadeh. 2020. “Liquid Metal-Based Route for Synthesizing and Tuning GasSensing Elements” 50: 7.
  • Kalantar-Zadeh, Kourosh, Jianbo Tang, Torben Daeneke, Anthony P O, Logan A Stewart, Jing Liu, Carmel Majidi, Rodney S Ruoff, Paul S Weiss, and Michael D Dickey. 2019. “Emergence of Liquid Metals in Nanotechnology.” ACS Nano 13.
  • Kang, Sung K, and Amit K Sarkhel. 1994. “Lead (Pb)-Free Solders for Electronic Packaging.” Journal of Electronic Materials 23 (8).
  • Kang, Yeo Kyung, Jumi Kim, Kwabena Darko, Sung Kyu Park, and Myung-Gil Kim. 2019. “Large-Scale Sonochemical Synthesis of Bi–Sn Eutectic Alloy Nanoparticles.” Journal of Nanoscience and Nanotechnology 20 (5): 3201–5.
  • Kim, Hoyeon, Junyoung Lim, Jihun Kim, Jungil Lee, and Yongsok Seo. 2020. “Multilayer Structuring of Nonleaded Metal (BiSn)/Polymer/Tungsten Composites for Enhanced Γ‐Ray Shielding.” Advanced Engineering Materials 22 (6): 1901448.
  • Li, Hongzhe, Roozbeh Abbasi, Yifang Wang, Francois M. Allioux, Pramod Koshy, Shuhada A. Idrus-Saidi, Md Arifur Rahim, et al. 2020. “Liquid Metal-Supported Synthesis of Cupric Oxide.” Journal of Materials Chemistry C 8 (5): 1656–65.
  • Lin, Yiliang, Jan Genzer, and Michael D. Dickey. 2020. “Attributes, Fabrication, and Applications of Gallium‐Based Liquid Metal Particles.” Advanced Science 7 (12): 2000192.
  • Liu, Nian, Guangmin Zhou, Ankun Yang, Xiaoyun Yu, Feifei Shi, Jie Sun, Jinsong Zhang, et al. 2019.
  • “Direct Electrochemical Generation of Supercooled Sulfur Microdroplets Well below Their Melting Temperature.” Proceedings of National Academy of Science 116 (3): 765–70.
  • Mahmood, Nasir, Isabela Alves De Castro, Kuppe Pramoda, Khashayar Khoshmanesh, Suresh K. Bhargava, and Kourosh Kalantar-Zadeh. 2019. “Atomically Thin Two-Dimensional Metal Oxide Nanosheets and Their Heterostructures for Energy Storage.” Energy Storage Materials 16 (January): 455–80.
  • Malakooti, Mohammad H., Michael R. Bockstaller, Krzysztof Matyjaszewski, and Carmel Majidi. 2020. “Liquid Metal Nanocomposites.” Nanoscale Advances.
  • Martin, Andrew, Boyce S. Chang, Zachariah Martin, Dipak Paramanik, Christophe Frankiewicz, Souvik Kundu, Ian D. Tevis, and Martin Thuo. 2019. “Heat‐Free Fabrication of Metallic Interconnects for Flexible/Wearable Devices.” Advanced Functional Materials 29 (40): 1903687.
  • Niu, Jiazheng, Hui Gao, Wensheng Ma, Fakui Luo, Kuibo Yin, Zhangquan Peng, and Zhonghua Zhang. 2018. “Dual Phase Enhanced Superior Electrochemical Performance of Nanoporous Bismuth-Tin Alloy Anodes for Magnesium-Ion Batteries.” Energy Storage Materials 14 (September): 351–60.
  • Niu, Jiazheng, Kuibo Yin, Hui Gao, Meijia Song, Wensheng Ma, Zhangquan Peng, and Zhonghua Zhang. 2019. “Composition- and Size-Modulated Porous Bismuth-Tin Biphase Alloys as Anodes for Advanced Magnesium Ion Batteries.” Nanoscale 11 (32): 15279–88.
  • Perepezko, J. H., and J. S. Paik. 1981. “Undercooling Behavior of Liquid Metals.” In MRS Proceedings, 8:49. Cambridge University Press.
  • Perepezko, J. H., and G. Wilde. 2016. “Melt Undercooling and Nucleation Kinetics.” Current Opinion in Solid State and Materials Science 20 (1): 3–12.
  • Perepezko, John H. 1984. “Nucleation in Undercooled Liquids.” Materials Science and Engineering 65 (1): 125–35.
  • Qu, Ke, Hong Zhang, Qianqian Lan, Xia Deng, Xinlong Ma, Yuanqing Huang, Junwei Zhang, et al. 2015. “Realization of the Welding of Individual TiO2 Semiconductor Nano-Objects Using a Novel 1D Au80Sn20 Nanosolder.” Journal of Materials Chemistry C 3 (43): 11311–17.
  • Rasmussen, Don H., and Jr. Carl R. Loper. 1975. Micron sized spherical droplets of metals and method. US4042374A, issued March 20, 1975.
  • Schülli, T U, R Daudin, G Renaud, A Vaysset, O Geaymond, and & A Pasturel. 2010. “Substrate-Enhanced Supercooling in AuSi Eutectic Droplets.” Nature 464.
  • Silva, Cristian A., Jian Lv, Lu Yin, Itthipon Jeerapan, Gabriel Innocenzi, Fernando Soto, Young‐Geun Ha, and Joseph Wang. 2020. “Liquid Metal Based Island‐Bridge Architectures for All Printed Stretchable Electrochemical Devices.” Advanced Functional Materials, 2002041.
  • Tevis, I. D., Newcomb, L. B., Thuo, M. 2014. "Synthesis of Liquid Core-Shell Particles and Solids Patchy Multicomponent Particles by Shearing Liquids Into Complex Particles (SLICE)." Langmuir 30 (47): 14308-13.
  • Thompson, C. V., and F. Spaepen. 1983. “Homogeneous Crystal Nucleation in Binary Metallic Melts.” Acta Metallurgica 31 (12): 2021–27.
  • Wang, Lei, and Jing Liu. 2013. “Liquid Metal Material Genome: Initiation of a New Research Track towards Discovery of Advanced Energy Materials.” Frontiers in Energy 7 (3): 317–32.
  • Wang, Qian, Yang Yu, and Jing Liu. 2018a. “Preparations, Characteristics and Applications of the Functional Liquid Metal Materials.” Advanced Engineering Materials 20 (5): 1700781.
  • Wang, Xuelin, Rui Guo, and Jing Liu. 2018b. “Liquid Metal Based Soft Robotics: Materials, Designs, and Applications.” Advanced Materials Technologies 4 (2): 1800549.
  • Xu, Chengtao, Biao Ma, Shuai Yuan, Chao Zhao, and Hong Liu. 2020. “High‐Resolution Patterning of Liquid Metal on Hydrogel for Flexible, Stretchable, and Self‐Healing Electronics.” Advanced Electronic Materials 6 (1): 1900721.
  • Yuan, Tingbiao, Zheng Hu, Yuxin Zhao, Jinjie Fang, Jun Lv, Qinghua Zhang, Zhongbin Zhuang, Lin Gu, and Shi Hu. 2020. “Two-Dimensional Amorphous SnO x from Liquid Metal: Mass Production, Phase Transfer, and Electrocatalytic CO 2 Reduction toward Formic Acid.” Nano Letters 20: 2916– 22.
  • Zahir, Md Hasan, Shamseldin A. Mohamed, R. Saidur, and Fahad A. Al-Sulaiman. 2019. “Supercooling of Phase-Change Materials and the Techniques Used to Mitigate the Phenomenon.” Applied Energy 240 (April): 793–817.
  • Zhai, Q.J., Y.L. Gao, W.B. Guan, and K.D. Xu. 2006. “Role of Size and Cooling Rate in Quenched Droplet of SnBi Eutectic Alloy.” Materials Science and Engineering: A 441 (1–2): 278–81.
APA Cinar S (2021). FABRICATION OF UNDERCOOLED BISMUTH TIN LIQUID METAL PARTICLES WITH HIGH YIELD. , 106 - 121. 10.36306/konjes.767269
Chicago Cinar Simge FABRICATION OF UNDERCOOLED BISMUTH TIN LIQUID METAL PARTICLES WITH HIGH YIELD. (2021): 106 - 121. 10.36306/konjes.767269
MLA Cinar Simge FABRICATION OF UNDERCOOLED BISMUTH TIN LIQUID METAL PARTICLES WITH HIGH YIELD. , 2021, ss.106 - 121. 10.36306/konjes.767269
AMA Cinar S FABRICATION OF UNDERCOOLED BISMUTH TIN LIQUID METAL PARTICLES WITH HIGH YIELD. . 2021; 106 - 121. 10.36306/konjes.767269
Vancouver Cinar S FABRICATION OF UNDERCOOLED BISMUTH TIN LIQUID METAL PARTICLES WITH HIGH YIELD. . 2021; 106 - 121. 10.36306/konjes.767269
IEEE Cinar S "FABRICATION OF UNDERCOOLED BISMUTH TIN LIQUID METAL PARTICLES WITH HIGH YIELD." , ss.106 - 121, 2021. 10.36306/konjes.767269
ISNAD Cinar, Simge. "FABRICATION OF UNDERCOOLED BISMUTH TIN LIQUID METAL PARTICLES WITH HIGH YIELD". (2021), 106-121. https://doi.org/10.36306/konjes.767269
APA Cinar S (2021). FABRICATION OF UNDERCOOLED BISMUTH TIN LIQUID METAL PARTICLES WITH HIGH YIELD. Konya mühendislik bilimleri dergisi (Online), 9(1), 106 - 121. 10.36306/konjes.767269
Chicago Cinar Simge FABRICATION OF UNDERCOOLED BISMUTH TIN LIQUID METAL PARTICLES WITH HIGH YIELD. Konya mühendislik bilimleri dergisi (Online) 9, no.1 (2021): 106 - 121. 10.36306/konjes.767269
MLA Cinar Simge FABRICATION OF UNDERCOOLED BISMUTH TIN LIQUID METAL PARTICLES WITH HIGH YIELD. Konya mühendislik bilimleri dergisi (Online), vol.9, no.1, 2021, ss.106 - 121. 10.36306/konjes.767269
AMA Cinar S FABRICATION OF UNDERCOOLED BISMUTH TIN LIQUID METAL PARTICLES WITH HIGH YIELD. Konya mühendislik bilimleri dergisi (Online). 2021; 9(1): 106 - 121. 10.36306/konjes.767269
Vancouver Cinar S FABRICATION OF UNDERCOOLED BISMUTH TIN LIQUID METAL PARTICLES WITH HIGH YIELD. Konya mühendislik bilimleri dergisi (Online). 2021; 9(1): 106 - 121. 10.36306/konjes.767269
IEEE Cinar S "FABRICATION OF UNDERCOOLED BISMUTH TIN LIQUID METAL PARTICLES WITH HIGH YIELD." Konya mühendislik bilimleri dergisi (Online), 9, ss.106 - 121, 2021. 10.36306/konjes.767269
ISNAD Cinar, Simge. "FABRICATION OF UNDERCOOLED BISMUTH TIN LIQUID METAL PARTICLES WITH HIGH YIELD". Konya mühendislik bilimleri dergisi (Online) 9/1 (2021), 106-121. https://doi.org/10.36306/konjes.767269