Yıl: 2021 Cilt: 33 Sayı: 2 Sayfa Aralığı: 299 - 307 Metin Dili: İngilizce DOI: 10.7240/jeps.829006 İndeks Tarihi: 29-07-2022

Experimental and Numerical Analysis of a Waste Cooking Oil Biodiesel Blend used in a Compression Ignition Engine

Öz:
It is necessary to meet increasingly stringent emission standards of IC engines, reducing the emission values. While improvingengine parameters and combustion chamber geometries can reduce emissions, also the research continues for alternative fuels.Biodiesel production from waste cooking oils has advantages in terms of recycling, environment, and cost. Waste cooking oilscan be used as fuel in compression ignition (CI) engines with minor modifications. Biodiesel can be used in neat form or blendwith diesel. In this way, there is no need to make any modifications to the existing diesel engines. In this study, diesel wasblended with biodiesel at 20% (B20) and it was used as fuel in a CI engine. The performance and emission values of this blendwere compared according to neat diesel fuel. As a result of the experimental and CFD simulation studies, it was observed thatthe use of the B20 fuel blend reduced CO emissions by 22.7% and soot emissions by 15.6%. In addition, the maximum pressureinside the cylinder has decreased by 2.7%.
Anahtar Kelime: emission waste cooking oil CI engine biodiesel CFD

Sıkıştırma Ateşlemeli Bir Motorda Kullanılan Atık Yemek Yağı Biyodizel Karışımının Deneysel ve Sayısal Analizi

Öz:
İçten yanmalı motorların emisyon değerlerinin azaltılması, gittikçe katılaşan standartların karşılanması için gereklidir. Motor parametreleri ve yanma odası geometrilerinin iyileştirilmesi emisyonları azaltabileceği gibi, alternatif yakıt arayışları da sürmektedir. Atık yemek yağlarından biyodizel üretimi, hem geri dönüşüm ve çevre duyarlılığı bakımından hem de maliyet bakımından avantajları olmaktadır. Atık yemek yağlar, küçük modifikasyonlarla, yakıt olarak kullanılabilecek duruma gelmektedir. Üretilen biyodizel saf halde kullanılabileceği gibi, dizel ile karıştırılarak kullanılabilmektedir. Bu şekilde, mevcut dizel motorlarda herhangi bir modifikasyon yapmaya gerek kalmamaktadır. Bu çalışmada, %20 oranında biyodizel, dizel ile karıştırılarak, yakıt olarak sıkıştırma ateşlemeli bir motorda kullanılmıştır ve saf dizel yakıt kullanıma göre performans ve emisyon değerleri karşılaştırılmıştır. Deneysel ve CFD simülasyon çalışmaları sonucunda, B20 yakıt karışımı kullanımıyla, CO emisyonlarında %22.6 ve is emisyonlarında %15.6 oranında azalma gözlemlenmiştir. Ayrıca silindir içi maksimum basınç, %2.7 oranında azalmıştır
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • [1] Knothe, G., & Razon, L. F. (2017). Biodiesel fuels. In Progress in Energy and Combustion Science (Vol. 58, pp. 36–59). Elsevier.
  • [2] Mohd Noor, C. W., Noor, M. M., & Mamat, R. (2018). Biodiesel as alternative fuel for marine diesel engine applications: A review. In Renewable and Sustainable Energy Reviews (Vol. 94, Issue April, pp. 127–142). Elsevier.
  • [3] Tropecêlo, A. I., Caetano, C. S., Caiado, M., & Castanheiro, J. E. (2016). Biodiesel production from waste cooking oil over sulfonated catalysts. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 38(2), 174–182.
  • [4] Phan, A. N., & Phan, T. M. (2008). Biodiesel production from waste cooking oils. Fuel, 87(17–18), 3490–3496.
  • [5] More, G. V., Koli, S. R., Rao, Y. V. H., Prasad, P. I., & Rao, B. N. (2020). Effect of compression ratio on compression ignition engine with RUCO biodiesel/ diethyl ether/ diesel fuel blends. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 1–20.
  • [6] Ma, F., & Hanna, M. A. (1999). Biodiesel production: A review. Bioresource Technology, 70(1), 1–15.
  • [7] Wong, Y. C. (2014). Biodiesel production from used cooking oil. Oriental Journal of Chemistry, 30(2), 521–528.
  • [8] Dubey, A., Prasad, R. S., & Singh, J. K. (2020). An Analytical and Economical Assessment of the Waste Cooking Oil based Biodiesel using Optimized Conditions on the Process Variables. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 1–16.
  • [9] Al-Dawody, M. F., Jazie, A. A., & Abdulkadhim Abbas, H. (2019). Experimental and simulation study for the effect of waste cooking oil methyl ester blended with diesel fuel on the performance and emissions of diesel engine. Alexandria Engineering Journal, 58(1), 9–17.
  • [10] Ulusoy, Y., Arslan, R., Tekin, Y., Sürmen, A., Bolat, A., & Şahin, R. (2018). Investigation of performance and emission characteristics of waste cooking oil as biodiesel in a diesel engine. Petroleum Science, 15(2), 396–404.
  • [11] Patel, C., Chandra, K., Hwang, J., Agarwal, R. A., Gupta, N., Bae, C., Gupta, T., & Agarwal, A. K. (2019). Comparative compression ignition engine performance, combustion, and emission characteristics, and trace metals in particulates from Waste cooking oil, Jatropha and Karanja oil derived biodiesels. Fuel, 236(September 2018), 1366–1376.
  • [12] Wei, L., Cheng, R., Mao, H., Geng, P., Zhang, Y., & You, K. (2018). Combustion process and NOx emissions of a marine auxiliary diesel engine fuelled with waste cooking oil biodiesel blends. Energy, 144, 73–80.
  • [13] Abed, K. A., El Morsi, A. K., Sayed, M. M., Shaib, A. A. E., & Gad, M. S. (2018). Effect of waste cooking-oil biodiesel on performance and exhaust emissions of a diesel engine. Egyptian Journal of Petroleum, 27(4), 985–989.
  • [14] Zareh, P., Zare, A. A., & Ghobadian, B. (2017). Comparative assessment of performance and emission characteristics of castor, coconut and waste cooking based biodiesel as fuel in a diesel engine. Energy, 139, 883–894.
  • [15] Qureshi, M. W. G., Khan, Z. M., Hussain, M., Ahmad, F., Shoaib, M., & Qasim, M. (2019). Experimental evaluation of a diesel engine for combustion, performance and exhaust emissions with fuel blends derived from a mixture of fish waste oil and waste cooking oil biodiesel. Polish Journal of Environmental Studies, 28(4), 2793–2803.
  • [16] Chen, H., Xie, B., Ma, J., & Chen, Y. (2018). NOx emission of biodiesel compared to diesel: Higher or lower? Applied Thermal Engineering, 137(December 2017), 584–593.
  • [17] Chaurasiya, P. K., Singh, S. K., Dwivedi, R., & Choudri, R. V. (2019). Combustion and emission characteristics of diesel fuel blended with raw jatropha, soybean and waste cooking oils. Heliyon, 5(5), e01564.
  • [18] Li, H., Yang, W., Zhou, D., & Yu, W. (2018). Numerical study of the effects of biodiesel unsaturation on combustion and emission characteristics in diesel engine. Applied Thermal Engineering, 137(January), 310–318.
  • [19] Yangaz, M. U., Özdemir, M. R., & Şener, R. (2019). Combustion performance of hydrogenenriched fuels in a premixed burner. Environmental Technology (UK), 1–12.
  • [20] Sener, R., Özdemir, M. R., & Yangaz, M. U. (2019). Effect of the geometrical parameters in a domestic burner with crescent flame channels for an optimal temperature distribution and thermal efficiency. Journal of Thermal Engineering, 5(6), 171-183.
  • [21] Sener, R., Yangaz, M. U., & Gul, M. Z. (2020). Effects of injection strategy and combustion chamber modification on a single-cylinder diesel engine. Fuel, 266, 117122.
  • [22] Hawi, M., Elwardany, A., Ookawara, S., & Ahmed, M. (2019). Effect of compression ratio on performance, combustion and emissions characteristics of compression ignition engine fueled with jojoba methyl ester. Renewable Energy, 141, 632–645.
  • [23] Venu, H., Raju, V. D., & Subramani, L. (2019). Combined effect of in fluence of nano additives, combustion chamber geometry and injection timing in a DI diesel engine fuelled with ternary (diesel-biodiesel-ethanol) blends. Energy, 174, 386–406.
  • [24] Ismail, T.M., Lu, D., Ramzy, K., El-salam, M. A., Yu, G., & Elkady, M. A. (2019). Experimental and theoretical investigation on the performance of a biodiesel-powered engine from plant seeds in Egypt. Energy, 189, 116197.
  • [25] Asadi, A., Zhang, Y., Mohammadi, H., Khorand, H., Rui, Z., Hossein, M., & Vahabzadeh, M. (2019). Combustion and emission characteristics of biomass derived biofuel, premixed in a diesel engine: A CFD study. Renewable Energy, 138, 79–89.
  • [26] Rajak, U., Nashine, P., Singh, T. S., & Verma, T. N. (2018). Numerical investigation of performance, combustion and emission characteristics of various biofuels. Energy Conversion and Management, 156(August 2017), 235–252.
  • [27] Zhao, F., Yang, W., Yu, W., Li, H., Sim, Y. Y., Liu, T., & Tay, K. L. (2018). Numerical study of soot particles from low temperature combustion of engine fueled with diesel fuel and unsaturation biodiesel fuels. Applied Energy, 211(May 2017), 187–193.
  • [28] Akcay, M., Yilmaz, I. T., & Feyzioglu, A. (2020). Effect of hydrogen addition on performance and emission characteristics of a common-rail CI engine fueled with diesel/waste cooking oil biodiesel blends. Energy, 212, 118538.
  • [29] Utlu, Z. (2007). Evaluation of biodiesel fuel obtained from waste cooking oil. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 29(14), 1295–1304.
  • [30] Richards, K. J., Senecal, P. K., & Pomraning, E. (2019). CONVERGE 2.4 Manual (p. 1078). Convergent Science.
  • [31] Li, Z., Wang, Y., Geng, H., Zhen, X., Liu, M., Xu, S., & Li, C. (2019). Parametric study of a diesel engine fueled with directly injected methanol and pilot diesel. Fuel, 256(April), 115882.
  • [32] Senecal, P. K., Pomraning, E., Richards, K. J., Briggs, T. E., Choi, C. Y., McDavid, R. M., & Patterson, M. A. (2003). Multi-dimensional modeling of direct-injection diesel spray liquid length and flame lift-off length using cfd and parallel detailed chemistry. SAE Technical Papers.
  • [33] Luo, Z., Plomer, M., Lu, T., Som, S., Longman, D. E., Sarathy, S. M., & Pitz, W. J. (2012). A reduced mechanism for biodiesel surrogates for compression ignition engine applications. Fuel. 99(1), 143–153.
  • [34] Amsden, A. A. (1997). KIVA-3V: A BlockStructured KIVA Program for Engines with Vertical or Canted Valves. LA Report.
  • [35] Frassoldati, A., D’Errico, G., Lucchini, T., Stagni, A., Cuoci, A., Faravelli, T., Onorati, A., & Ranzi, E. (2015). Reduced kinetic mechanisms of diesel fuel surrogate for engine CFD simulations. Combustion and Flame, 162(10), 3991–4007.
  • [36] Reitz, R.D. (1987). Mechanisms of Atomization Processes in High-Pressure Vaporizing Sprays. Atomization and Spray Technology, 3, 309– 337.
  • [37] Schmidt, D. P., & Rutland, C. J. (2000). A New Droplet Collision Algorithm. Journal of Computational Physics, 164(1), 62-80.
  • [38] Heywood, J. (1988). Internal combustion engine fundamentals. In McGraw Hill.
  • [39] Hiroyasu, H., & Kadota, T. (1976). Models for Combustion and Formation of Nitric Oxide and Soot in Direct Injection Diesel Engines.
  • [40] Kaya, C., & Kökkülünk, G. (2020). Biodiesel as alternative additive fuel for diesel engines: An experimental and theoretical investigation on emissions and performance characteristics. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 1–23.
  • [41] Zhang, Z., Liu, X., Liu, H., Wu, Y., Zaman, M., Geng, Z., Jin, C., Zheng, Z., Yue, Z., & Yao, M. (2021). Effect of soybean oil/PODE/ethanol blends on combustion and emissions on a heavy-duty diesel engine. Fuel, 288(October 2020), 119625.
APA Şener R (2021). Experimental and Numerical Analysis of a Waste Cooking Oil Biodiesel Blend used in a Compression Ignition Engine. , 299 - 307. 10.7240/jeps.829006
Chicago Şener Ramazan Experimental and Numerical Analysis of a Waste Cooking Oil Biodiesel Blend used in a Compression Ignition Engine. (2021): 299 - 307. 10.7240/jeps.829006
MLA Şener Ramazan Experimental and Numerical Analysis of a Waste Cooking Oil Biodiesel Blend used in a Compression Ignition Engine. , 2021, ss.299 - 307. 10.7240/jeps.829006
AMA Şener R Experimental and Numerical Analysis of a Waste Cooking Oil Biodiesel Blend used in a Compression Ignition Engine. . 2021; 299 - 307. 10.7240/jeps.829006
Vancouver Şener R Experimental and Numerical Analysis of a Waste Cooking Oil Biodiesel Blend used in a Compression Ignition Engine. . 2021; 299 - 307. 10.7240/jeps.829006
IEEE Şener R "Experimental and Numerical Analysis of a Waste Cooking Oil Biodiesel Blend used in a Compression Ignition Engine." , ss.299 - 307, 2021. 10.7240/jeps.829006
ISNAD Şener, Ramazan. "Experimental and Numerical Analysis of a Waste Cooking Oil Biodiesel Blend used in a Compression Ignition Engine". (2021), 299-307. https://doi.org/10.7240/jeps.829006
APA Şener R (2021). Experimental and Numerical Analysis of a Waste Cooking Oil Biodiesel Blend used in a Compression Ignition Engine. International journal of advances in engineering and pure sciences (Online), 33(2), 299 - 307. 10.7240/jeps.829006
Chicago Şener Ramazan Experimental and Numerical Analysis of a Waste Cooking Oil Biodiesel Blend used in a Compression Ignition Engine. International journal of advances in engineering and pure sciences (Online) 33, no.2 (2021): 299 - 307. 10.7240/jeps.829006
MLA Şener Ramazan Experimental and Numerical Analysis of a Waste Cooking Oil Biodiesel Blend used in a Compression Ignition Engine. International journal of advances in engineering and pure sciences (Online), vol.33, no.2, 2021, ss.299 - 307. 10.7240/jeps.829006
AMA Şener R Experimental and Numerical Analysis of a Waste Cooking Oil Biodiesel Blend used in a Compression Ignition Engine. International journal of advances in engineering and pure sciences (Online). 2021; 33(2): 299 - 307. 10.7240/jeps.829006
Vancouver Şener R Experimental and Numerical Analysis of a Waste Cooking Oil Biodiesel Blend used in a Compression Ignition Engine. International journal of advances in engineering and pure sciences (Online). 2021; 33(2): 299 - 307. 10.7240/jeps.829006
IEEE Şener R "Experimental and Numerical Analysis of a Waste Cooking Oil Biodiesel Blend used in a Compression Ignition Engine." International journal of advances in engineering and pure sciences (Online), 33, ss.299 - 307, 2021. 10.7240/jeps.829006
ISNAD Şener, Ramazan. "Experimental and Numerical Analysis of a Waste Cooking Oil Biodiesel Blend used in a Compression Ignition Engine". International journal of advances in engineering and pure sciences (Online) 33/2 (2021), 299-307. https://doi.org/10.7240/jeps.829006