Yıl: 2021 Cilt: 9 Sayı: 3 Sayfa Aralığı: 492 - 504 Metin Dili: İngilizce DOI: 10.29109/gujsc.951408 İndeks Tarihi: 29-07-2022

Increasing Low-Velocity Impact Strength of Glass Fiber Sandwich Composites with Nanoparticle Reinforced Adhesive

Öz:
The use of sandwich composite structures in the aerospace industry is increasing. Therefore,Improving the impact and other mechanical properties of sandwich composite panels (SCP) isessential for aviation safety. In the manufacture of SCPs, bonding with the lower and uppersurfaces of the honeycomb structure is provided by bonding connections. So, by improving themechanical properties of the adhesives used in SCP, the mechanical rigidity of the wholestructure will be enhanced. In this study, sandwich composite panels were produced using glassfiber reinforced composite, three different adhesives (pure polyurethane, 0.1% and 0.2% multiwalled carbon nanotube reinforced polyurethane) and an aluminum honeycomb with a celldiameter of 8.86 mm. Low-velocity impact tests were applied to the manufactured sandwichcomposites at the initial energy level of 50 J. After impact tests, load-time, load-deflection andenergy-time graphs were obtained, and the effect of multi-walled carbon nanotube (MWCNT)contribution was evaluated. Also, the effect of the MWCNT addition on impact properties wasdetermined by making a damage analysis. It was observed that the carbon nanotube addition tothe polyurethane adhesive increased the maximum contact force by 3%, improving the lowspeed impact properties of SCPs.
Anahtar Kelime: nano adhesive Sandwich composite panels carbon nanotube

Cam Fiber Sandviç Kompozitlerin Düşük Hızlı Darbe Mukavemetinin Nano Parçacık Takviyeli Yapıştırıcı Kullanılarak Artırılması

Öz:
Sandviç kompozit yapıların havacılık ve uzay endüstrisinde kullanımı artmaktadır. Sandviç kompozit panellerin (SKP) darbe ve diğer mekanik özelliklerinin geliştirilmesi havacılık emniyeti açısından önem arz etmektedir. SKP’lerin imalatında bal peteği yapının alt ve üst yüzeyler ile bağı yapıştırma bağlantıları ile sağlanmaktadır. SKP’de kullanılan yapıştırıcıların mekanik özelliklerinin iyileştirilmesi ile bütün yapının mekanik rijitliği iyileştirilmiş olacaktır. Bu çalışmada cam fiber takviyeli kompozit, üç farklı yapıştırıcı (saf poliüretan, ağırlıkça %0,1 ve %0,2 çok cidarlı karbon nano tüp katkılı poliüretan) ve 8,86 mm hücre çapında alüminyum bal peteği kullanılarak sandviç kompozit paneller üretilmiştir. Üretimi yapılan sandviç kompozitlere 50 J ilk enerji seviyesinde düşük hızlı darbe testleri uygulanmıştır. Darbe deneyleri sonrasında yük-zaman, yük-sehim ve enerji zaman grafikleri elde edilerek çok cidarlı karbon nano tüp (ÇCKNT) katkısının etkisi değerlendirilmiştir. İlaveten, hasar analizi yapılarak ÇCKNT katkısının darbe özelliklerine etkisi belirlenmiştir Poliüretan yapıştırıcıya karbon nano tüp katkısının en büyük temas kuvvetini %3 oranında artırarak SKP’lerin düşük hızlı darbe özelliklerini iyileştirdiği görülmüştür.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • [1] M.O. Kaman, M.Y. Solmaz, K. Turan, Experimental and numerical analysis of critical buckling load of honeycomb sandwich panels, J. Compos. Mater. 44 (2010) 2819–2831. https://doi.org/10.1177/0021998310371541.
  • [2] M. Aslan, O. Güler, Ü. Alver, The Investigation of the Mechanical Properties of Sandwich Panel Composites with Different Surface and Core Materials, Pamukkale Univ. J. Eng. Sci. 24 (2018) 1062–1068. https://doi.org/10.5505/pajes.2018.37605.
  • [3] A. GÜNÖZ, Y. KEPİR, M. KARA, the Investigation of Hardness Properties of Gfrp Composite Pipes Under Seawater Conditions, Turkish J. Eng. 6 (2020) 34–39. https://doi.org/10.31127/tuje.775536.
  • [4] Y. KEPİR, A. GÜNÖZ, M. KARA, Repairing of damaged composite materials and self-healing composites, Turkish J. Eng. 6 (2021) 149–155. https://doi.org/10.31127/tuje.866955.
  • [5] V. Birman, G.A. Kardomateas, Review of current trends in research and applications of sandwich structures, Compos. Part B Eng. 142 (2018) 221–240. https://doi.org/10.1016/j.compositesb.2018.01.027.
  • [6] G.B. Chai, S. Zhu, A review of low-velocity impact on sandwich structures, in: Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl., 2011: pp. 207–230. https://doi.org/10.1177/1464420711409985.
  • [7] T. TOPKAYA, Cıvata ile Birleştirilmiş Sandviç Kompozitlerin Bağlantı Mukavemetinin Karbon Fiber Takviye Kullanılarak Arttırılması, Gazi Üniversitesi Fen Bilim. Derg. Part C Tasarım ve Teknol. 8 (2020) 996–1004. https://doi.org/10.29109/gujsc.804147.
  • [8] S. Georgiadis, A.J. Gunnion, R.S. Thomson, B.K. Cartwright, Bird-strike simulation for certification of the Boeing 787 composite moveable trailing edge, Compos. Struct. 86 (2008) 258– 268. https://doi.org/10.1016/j.compstruct.2008.03.025.
  • [9] C. Caglayan, I. Osken, A. Ataalp, H.S. Turkmen, H. Cebeci, Impact response of shear thickening fluid filled polyurethane foam core sandwich composites, Compos. Struct. 243 (2020) 112171. https://doi.org/10.1016/j.compstruct.2020.112171.
  • [10] L. Uğur, H. Duzcukoglu, O.S. Sahin, H. Akkuş, Investigation of impact force on aluminium honeycomb structures by finite element analysis, J. Sandw. Struct. Mater. 22 (2020) 87–103. https://doi.org/10.1177/1099636217733235.
  • [11] X. Zhang, F. Xu, Y. Zang, W. Feng, Experimental and numerical investigation on damage behavior of honeycomb sandwich panel subjected to low-velocity impact, Compos. Struct. 236 (2020) 111882. https://doi.org/10.1016/j.compstruct.2020.111882.
  • [12] X. Wu, H. Yu, L. Guo, L. Zhang, X. Sun, Z. Chai, Experimental and numerical investigation of static and fatigue behaviors of composites honeycomb sandwich structure, Compos. Struct. 213 (2019) 165–172. https://doi.org/10.1016/j.compstruct.2019.01.081.
  • [13] M. Shifa, F. Tariq, A.D. Chandio, Mechanical and electrical properties of hybrid honeycomb sandwich structure for spacecraft structural applications, J. Sandw. Struct. Mater. (2019). https://doi.org/10.1177/1099636219830783.
  • [14] J. Wang, C. Shi, N. Yang, H. Sun, Y. Liu, B. Song, Strength , sti ff ness , and panel peeling strength of carbon fi ber-reinforced composite sandwich structures with aluminum honeycomb cores for vehicle body, Compos. Struct. 184 (2018) 1189–1196. https://doi.org/10.1016/j.compstruct.2017.10.038.
  • [15] K. Mehar, S.K. Panda, A. Dehengia, V.R. Kar, Vibration analysis of functionally graded carbon nanotube reinforced composite plate in thermal environment, J. Sandw. Struct. Mater. 18 (2016) 151–173. https://doi.org/10.1177/1099636215613324.
  • [16] S. Belouettar, A. Abbadi, Z. Azari, R. Belouettar, P. Freres, Experimental investigation of static and fatigue behaviour of composites honeycomb materials using four point bending tests, Compos. Struct. 87 (2009) 265–273. https://doi.org/10.1016/j.compstruct.2008.01.015.
  • [17] M. Sadeghi, M.H. Pol, Investigation of behaviors of glass/epoxy laminate composites reinforced with carbon nanotubes under quasi-static punch shear loading, J. Sandw. Struct. Mater. 21 (2019) 1535–1556. https://doi.org/10.1177/1099636217719223.
  • [18] A.S. Sayyad, Y.M. Ghugal, Bending, buckling and free vibration of laminated composite and sandwich beams: A critical review of literature, Compos. Struct. 171 (2017) 486–504. https://doi.org/10.1016/j.compstruct.2017.03.053.
  • [19] E. Burgaz, C. Kendirlioglu, Thermomechanical behavior and thermal stability of polyurethane rigid nanocomposite foams containing binary nanoparticle mixtures, Polym. Test. 77 (2019) 105930. https://doi.org/10.1016/j.polymertesting.2019.105930.
  • [20] E. Burgaz, Polyurethane Insulation Foams for Energy and Sustainability, 2019.
  • [21] G. Otorgust, H. Dodiuk, S. Kenig, R. Tenne, Important insights into polyurethane nanocompositeadhesives; a comparative study between INT-WS2 and CNT, Eur. Polym. J. 89 (2017) 281–300. https://doi.org/10.1016/j.eurpolymj.2017.02.027.
  • [22] A. Gunoz, Y. Kepir, M. Kara, Tensile Strength Alteration of GFRP Composite Pipes Under Seawater-Dominated Conditions, J. Fail. Anal. Prev. 20 (2020) 1426–1430. https://doi.org/10.1007/s11668-020-00962-2.
  • [23] G. Zhou, M.D. Hill, Impact damage and energy-absorbing characteristics and residual in-plane compressive strength of honeycomb sandwich panels, J. Sandw. Struct. Mater. 11 (2009) 329–356. https://doi.org/10.1177/1099636209105704.
  • [24] Y.M. Jen, L.Y. Chang, Effect of thickness of face sheet on the bending fatigue strength of aluminum honeycomb sandwich beams, Eng. Fail. Anal. 16 (2009) 1282–1293. https://doi.org/10.1016/j.engfailanal.2008.08.004.
  • [25] Y.M. Jen, C.W. Ko, H. Bin Lin, Effect of the amount of adhesive on the bending fatigue strength of adhesively bonded aluminum honeycomb sandwich beams, Int. J. Fatigue. 31 (2009) 455–462. https://doi.org/10.1016/j.ijfatigue.2008.07.008.
  • [26] A. Kaboorani, B. Riedl, Nano-aluminum oxide as a reinforcing material for thermoplastic adhesives, J. Ind. Eng. Chem. 18 (2012) 1076–1081. https://doi.org/10.1016/j.jiec.2011.12.001.
  • [27] H. Akkus, H. Duzcukoglu, O.S. Sahin, Experimental research and use of finite elements method on mechanical behaviors of honeycomb structures assembled with epoxy-based adhesives reinforced with nanoparticles, J. Mech. Sci. Technol. 31 (2017) 165–170. https://doi.org/10.1007/s12206-016-1216-0.
  • [28] G. Otorgust, H. Dodiuk, S. Kenig, R. Tenne, Important insights into polyurethane nanocompositeadhesives; a comparative study between INT-WS2 and CNT, Eur. Polym. J. 89 (2017) 281–300. https://doi.org/10.1016/j.eurpolymj.2017.02.027.
  • [29] A. Tounici, J.M. Martín-Martínez, Addition of small amounts of graphene oxide in the polyol during the synthesis of waterborne polyurethane urea adhesives for improving their adhesion properties, Int. J. Adhes. Adhes. 104 (2021) 102725. https://doi.org/10.1016/j.ijadhadh.2020.102725.
  • [30] A. Gunoz, Y. Kepir, M. Kara, Effect of hydrothermal aging on the mechanical properties of nanocomposite pipes, Mater. Test. 63 (2021) 253–258. https://doi.org/10.1515/mt-2020-0037.
  • [31] H. Sepetcioglu, A. Gunoz, M. Kara, Effect of hydrothermal ageing on the mechanical behaviour of graphene nanoplatelets reinforced basalt fibre epoxy composite pipes, Polym. Polym. Compos. (2021). https://doi.org/10.1177/0967391121992939.
  • [32] M.E. Kabir, M.C. Saha, S. Jeelani, Effect of ultrasound sonication in carbon nanofibers/polyurethane foam composite, Mater. Sci. Eng. A. 459 (2007) 111–116. https://doi.org/10.1016/j.msea.2007.01.031.
  • [33] M.C. Saha, M.E. Kabir, S. Jeelani, Enhancement in thermal and mechanical properties of polyurethane foam infused with nanoparticles, Mater. Sci. Eng. A. 479 (2008) 213–222. https://doi.org/10.1016/j.msea.2007.06.060.
  • [34] M. Uyaner, M. Kara, Dynamic response of laminated composites subjected to low-velocity impact, J. Compos. Mater. 41 (2007) 2877–2896. https://doi.org/10.1177/0021998307079971.
  • [35] A.A. Mohammed, M. V. Hosur, S. Jeelani, Processing and characterization of nanophased polyurethane foams, Cell. Polym. 25 (2006) 293–306. https://doi.org/10.1177/026248930602500602.
  • [36] M.A. Bhuiyan, M.V. Hosur, S. Jeelani, Low-velocity impact response of sandwich composites with nanophased foam core and biaxial braided face sheets, Compos. Part B Eng. 40 (2009) 561– 571. https://doi.org/10.1016/j.compositesb.2009.03.010.
APA Polat H (2021). Increasing Low-Velocity Impact Strength of Glass Fiber Sandwich Composites with Nanoparticle Reinforced Adhesive. , 492 - 504. 10.29109/gujsc.951408
Chicago Polat Huseyin Increasing Low-Velocity Impact Strength of Glass Fiber Sandwich Composites with Nanoparticle Reinforced Adhesive. (2021): 492 - 504. 10.29109/gujsc.951408
MLA Polat Huseyin Increasing Low-Velocity Impact Strength of Glass Fiber Sandwich Composites with Nanoparticle Reinforced Adhesive. , 2021, ss.492 - 504. 10.29109/gujsc.951408
AMA Polat H Increasing Low-Velocity Impact Strength of Glass Fiber Sandwich Composites with Nanoparticle Reinforced Adhesive. . 2021; 492 - 504. 10.29109/gujsc.951408
Vancouver Polat H Increasing Low-Velocity Impact Strength of Glass Fiber Sandwich Composites with Nanoparticle Reinforced Adhesive. . 2021; 492 - 504. 10.29109/gujsc.951408
IEEE Polat H "Increasing Low-Velocity Impact Strength of Glass Fiber Sandwich Composites with Nanoparticle Reinforced Adhesive." , ss.492 - 504, 2021. 10.29109/gujsc.951408
ISNAD Polat, Huseyin. "Increasing Low-Velocity Impact Strength of Glass Fiber Sandwich Composites with Nanoparticle Reinforced Adhesive". (2021), 492-504. https://doi.org/10.29109/gujsc.951408
APA Polat H (2021). Increasing Low-Velocity Impact Strength of Glass Fiber Sandwich Composites with Nanoparticle Reinforced Adhesive. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım ve Teknoloji, 9(3), 492 - 504. 10.29109/gujsc.951408
Chicago Polat Huseyin Increasing Low-Velocity Impact Strength of Glass Fiber Sandwich Composites with Nanoparticle Reinforced Adhesive. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım ve Teknoloji 9, no.3 (2021): 492 - 504. 10.29109/gujsc.951408
MLA Polat Huseyin Increasing Low-Velocity Impact Strength of Glass Fiber Sandwich Composites with Nanoparticle Reinforced Adhesive. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım ve Teknoloji, vol.9, no.3, 2021, ss.492 - 504. 10.29109/gujsc.951408
AMA Polat H Increasing Low-Velocity Impact Strength of Glass Fiber Sandwich Composites with Nanoparticle Reinforced Adhesive. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım ve Teknoloji. 2021; 9(3): 492 - 504. 10.29109/gujsc.951408
Vancouver Polat H Increasing Low-Velocity Impact Strength of Glass Fiber Sandwich Composites with Nanoparticle Reinforced Adhesive. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım ve Teknoloji. 2021; 9(3): 492 - 504. 10.29109/gujsc.951408
IEEE Polat H "Increasing Low-Velocity Impact Strength of Glass Fiber Sandwich Composites with Nanoparticle Reinforced Adhesive." Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım ve Teknoloji, 9, ss.492 - 504, 2021. 10.29109/gujsc.951408
ISNAD Polat, Huseyin. "Increasing Low-Velocity Impact Strength of Glass Fiber Sandwich Composites with Nanoparticle Reinforced Adhesive". Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım ve Teknoloji 9/3 (2021), 492-504. https://doi.org/10.29109/gujsc.951408