Fatih DARICIK
(Alanya Alaaddin Keykubat Üniversitesi, Makine Mühendisliği Bölümü, Antalya, Türkiye)
Sakine KIRATLI
(Çankırı Karatekin Üniversitesi, Makine Mühendisliği Bölümü, Çankırı, Türkiye)
Yıl: 2021Cilt: 36Sayı: 1ISSN: 2757-9255 / 2757-9255Sayfa Aralığı: 219 - 233Türkçe

11 0
Farklı Çevresel Şartlarda İki Eksenli Yüklemelere Maruz Tabakalı Kompozit Malzemelerin Hasarı
Polimer matrisli tabakalı kompozit malzemelerin bileşenlerinin dayanım yönünden çok farklı olması bu malzeme grubunun hasar analizlerini zorlaştırmaktadır. Tabakalı kompozitlerin hasar analizleri için önerilen birçok hasar ölçütü bulunmaktadır. Bu çalışmada iki yönde düzlemsel yayılı yüke ve bir yönde yayılı yük ile kayma yüküne maruz S-cam lifi/epoksi ve karbon lifi/epoksi tabakalı kompozit malzemelerin Tsai-Wu ve Puck ölçütüne göre hasarı araştırılmıştır. Birçok yükleme halinde Puck ölçütü daha güvenli hasar zarfları göstermektedir. Ancak hangi hasar ölçütünün daha güvenli olduğu tabakalı kompozit malzemelerin türüne, çevresel şartlara, takviye lif açılarına ve yüklemenin işaretine göre farklılıklar göstermektedir. Her iki malzeme türünün hem açılı hem de çapraz katlı tasarımları için tüm iki eksenli yüklemelerde malzeme dayanımını en çok düşüren etken ortam nemidir. S-cam lifi/epoksi tabakalı kompozitlerde Puck ölçütü ile oluşturulan hasar zarfları ortam sıcaklığından daha fazla etkilenirken, karbon lifi/epoksi tabakalı kompozit malzemelerde Tsai-Wu ölçütü ortam sıcaklığı değişimine karşı daha duyarlı davranış göstermiştir.
DergiAraştırma MakalesiErişime Açık
  • 1. Abdul Majid, M.S., Assaleh, T.A., Gibson, A.G., Hale, J.M., Fahrer, A., Rookus, C.A.P., Hekman, M., 2011. Ultimate Elastic Wall Stress (UEWS) Test of Glass Fibre Reinforced Epoxy (GRE) Pipe. Compos Part A Appl Sci Manuf 42(10), 1500–1508. doi:10.1016/j. compositesa.2011.07.001.
  • 2. Hawa, A., Abdul Majid, M.S., Afendi, M., Marzuki, H.F.A., Amin, N.A.M., Mat, F., Gibson, A.G., 2016. Burst Strength and Impact Behaviour of Hydrothermally Aged Glass Fibre/epoxy Composite Pipes. Mater Des, 89, 455–464. doi:10.1016/j.matdes.2015.09.082.
  • 3. Yu, K., Morozov, E.V., Ashraf, M.A., Shankar, K., 2015. Numerical Analysis of the Mechanical Behaviour of Reinforced Thermoplastic Pipes Under Combined External Pressure and Bending. Compos Struct, 131, 453–61. doi:10.1016/j.compstruct. 2015.05.033.
  • 4. Quaresimin, M., Carraro, P.A., Maragoni, L., 2015. Influence of Load Ratio on the Biaxial Fatigue Behaviour and Damage Evolution in Glass/epoxy Tubes Under Tension-torsion Loading. Compos Part A Appl Sci Manuf, 78, 294–302. doi:10.1016/j.compositesa.2015.08.009.
  • 5. Perillo, G., Vacher, R., Grytten, F., Sørbø, S., Delhaye, V., 2014. Material Characterisation and Failure Envelope Evaluation of Filament Wound GFRP and CFRP Composite Tubes. Polym Test, 40:54–62. doi:10.1016/j. polymertesting.2014.08.009.
  • 6. Quaresimin, M., Carraro, P.A., 2013. On the Investigation of the Biaxial Fatigue Behaviour of Unidirectional Composites. Compos Part B Eng, 54, 200–208. doi:10.1016/j.compositesb.2013.05.014.
  • 7. Reddy, P.S.K., Krishna, T.H., 2012. Optimum Design and Analysis of Filament Wound Composite Tubes in Pure and Combined Loading, 1, 1–4.
  • 8. Bakaiyan, H., Hosseini, H., Ameri, E., 2009. Analysis of Multi-layered Filament-wound Composite Pipes Under Combined Internal Pressure and Thermomechanical Loading with Thermal Variations. Compos Struct, 88, 532-541. doi:10.1016/j.compstruct.2008.05. 017.
  • 9. Çallioǧlu, H., Ergun, E., Demirdag, O., 2008. Stress Analysis of Filament-wound Composite Cylinders Under Combined Internal Pressure and Thermal Loading. Adv Compos Lett 17,13–21. doi:10.1177/096369350801700102.
  • 10. Li, Z.M., Shen, H.S., 2008. Postbuckling of 3D Braided Composite Cylindrical Shells Under Combined External Pressure and Axial Compression in Thermal Environments. Int J Mech Sci, 50, 719–731. doi:10.1016/j.ijmecsci.2007.12.001.
  • 11. Liu, W., Soden, P.D., Kaddour, A.S., 2005. Design of End Plugs and Specimen Reinforcement for Testing ±55° Glass/epoxy Composite Tubes Under Biaxial Compression. Comput Struct, 83, 976–988. doi:10.1016/ j.compstruc.2004.11.004.
  • 12. Xia, M., Kemmochi, K., Takayanagi, H., 2001. Analysis of Filament-wound Fiber-reinforced Sandwich Pipe Under Combined Internal Pressure and Thermomechanical Loading. Compos Struct, 51, 273-283. doi:10.1016/S0263-8223(00)00137-9.
  • 13. Martens, M., Ellyin, F., 2000. Biaxial Monotonic Behavior of a Multidirectional Glass Fiber Epoxy Pipe. Compos Part A Appl Sci Manuf, 31, 1001–1014. doi:10.1016/ S1359-835X(00)00041-5.
  • 14. Gargiulo, C., Marchetti, M., Rizzo, A., 1996. Prediction of Failure Envelopes of Composite Tubes Subjected to Biaxial Loadings. Acta Astronaut, 39, 355–368. doi:10.1016/S0094- 5765(96)00081-1.
  • 15. Tomblin, J., Sherraden, J., Seneviratne, W., Raju, K.S., 2002. A-Basis and B-Basis Design Allowables for Epoxy Based Prepreg. Toray T700GC-12K-31E/#2510 Unidirectional Tape. AGATE-WP3.3-033051-132.
  • 16. Solvay. Technical Data Sheet Cycom® 381 Prepreg 2021. https://catalogservice.solvay. com/downloadDocument?fileId=MDkwMTY2OWM4MDU1YmZmNg==&fileName=CYCO M 381_CM_EN.pdf&base=FAST.
  • 17. Puck, A., Schürmann, H., 2004. Failure Analysis of FRP Laminates by Means of Physically Based Phenomenological Models. Fail Criteria Fibre-Reinforced-Polymer Compos, 264–97. doi:10.1016/B978-008044475-8/50011-1.

TÜBİTAK ULAKBİM Ulusal Akademik Ağ ve Bilgi Merkezi Cahit Arf Bilgi Merkezi © 2019 Tüm Hakları Saklıdır.