Yıl: 2020 Cilt: 12 Sayı: 2020 Özel Sayı Sayfa Aralığı: 69 - 90 Metin Dili: Türkçe DOI: 10.18613/deudfd.740159 İndeks Tarihi: 02-11-2021

DENİZ KAZALARININ ÇÖZÜMLENMESİNE GÜNCEL BİR BAKIŞ: FRAM YÖNTEMİ İLE ANALİZ ÖRNEĞİ

Öz:
Dünyada taşımacılık etkinliklerinin yaklaşık yüzde sekseninin deniz yoluylayapılıyor olması doğal olarak deniz trafiğinde atışa neden olmaktadır.Uluslararası Denizcilik Örgütü’nün (IMO-International Maritime Organization)seyir emniyeti, insan hayatı ve çevrenin korunmasına yönelik koyduğu kurallar,uluslararası sözleşmeler ve protokoller ve tavsiye kararlarının varlığına rağmendeniz kazaları olmaya devam etmektedir. Denizciliğe bir bütün olarakbakıldığında; kaza riskini en aza indirebilmek, seyir emniyeti ve güvenliğinisağlamak, insan yaşamı ve çevrenin korunmasını garanti altına almak içinyürürlükteki kural ve yönergelere uymak kadar, geçmişte yaşanan kaza veolumsuzluklardan ders çıkarmak gerekliliğinin önemli olduğu görülmektedir. Buçalışma deniz kazalarının analizine yeni bir soluk getirmek amacıyla, FunctionalResonance Analysis Model-İşlevsel Birleştirme Analiz Modeli (FRAM)yöntemiyle geçmişte yaşanmış bir deniz kazasını analiz etmektedir. Normalişleyişlerin (variables) beklenmedik birleşimlerinin/kombinasyonlarının(resonance) kazaya neden olabileceği varsayımını esas alan FRAM yöntemi ileyapılan bu çözümlemeler, gemi kaza riskini azaltmada rehber niteliğindeolacaktır. Yapılan analiz kazanın oluşmasında etken olan değişkenliklerinbağlılıklarının lineer olmadığını, seyir yardımcı cihazlarının kaza riskini ortadankaldıramadığını, kazanın tek bir nedene değil birçok nedenin bileşkesinden ortayaçıktığını ve kazanın önlenmesinde durumsal farkındalığın önemli bir roloynadığını ortaya koymuştur.
Anahtar Kelime:

A CONTEMPORARY PERSPECTIVE ON THE ANALYSIS OF MARITIME ACCIDENTS: AN ANALYSIS EXAMPLE WITH FRAM METHOD

Öz:
Nearly eighty percent of global transportation activities are performed seaborne and this naturally causes an increase in maritime traffic. In spite of the existence of the regulations and recommendations on navigation safety, safety of life and environmental protection laid down by International Maritime Organization (IMO) and presence of international conventions and protocols, maritime accidents still continue to happen. Considering the whole maritime world, in order to minimise risk of accident and to ensure navigation safety and security, learning lessons from the past accidents is as important as abiding by the rules and regulations in force. This study, with an effort to bring novelty to analysis of maritime accidents, utilizes Functional Resonance Analysis Model (FRAM) method to analyse a past maritime accident. FRAM method assumes that accidents result from unexpected combinations (resonance) of normal performance variability. Accident analyses performed by FRAM method will serve as useful guidelines to minimise risk of maritime accidents. Analysis has shown that variables causing the accident do not have a linear relation. Having all necessary navigational aids on the bridge does not necessarily eliminate the risk of accident. One other important finding is that a single substantial reason did not cause the accident; on the contrary, it was caused by combination of reasons. The study also makes a reference to situational awareness as it plays a great role in preventing the accidents.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • Antão, P. ve Guedes Soares, C. (2006). Fault-tree models of accident scenarios of RoPax vessels. International Journal of Automation and Computing, 3(2), 107–116.
  • Antão, P., Guedes Soares, C., Grande, O. ve Trucco, P. (2008). Analysis of maritime accident data with BBN models. S. Martorell, C. Guedes Soares ve J. Barnett (Ed.), Safety, Reliability and Risk Analysis: Theory, Methods and Applications (s. 3265–3273). London: Taylor & Francis Group.
  • Baalisampang, T., Abbassi, R., Garaniya, V., Khan, F. ve Dadashzadeh, M. (2018). Review and analysis of fire and explosion accidents in maritime transportation. Ocean Engineering, 158, 350–366.
  • Baltic Sea Maritime Incidence Response Group (MIRG) (2017). Baltic Sea MIRG Project 2014-2016 Ship Fire Incident Analysis. The Finnish Border Guard, Ministry for Foreign Affairs of Finland.
  • Belmonte, F., Schön, W., Heurley, L. ve Capel, L. (2011). Interdisciplinary safety analysis of complex socio-technical systems based on the functional resonance accident model: an application to railway traffic supervision. Reliability Engineering and System Safety, 96(2), 237–249.
  • Carvalho, P.V.R. (2011). The use of Functional Resonance Analysis Method (FRAM) in a mid-air collision to understand some characteristics of the air traffic management system resilience. Reliability Engineering and System Safety, 96(11), 1482–1498.
  • Celik, M., Lavasani, S. M. ve Wang, J. (2010). A risk-based modelling approach to enhance shipping accident investigation, Safety Science, 48(1), 18–27.
  • Darbra, R.M. ve Casal, J. (2004). Historical analysis of accidents in seaports. Safety Science, 42(2), 85–98.
  • Eleftheria, E., Apostolos, P., Markos, V. (2016). Statistical analysis of ship accidents and review of safety level. Safety Science, 85, 282–292.
  • Goerlandt, F. ve Kujala, P. (2011). Traffic simulation based ship collision probability modeling. Reliability Engineering and System Safety, 96(1), 91–107.
  • Hetherington, C., Flin, R., Mearns, K. (2006). Safety in shipping: the human element. Journal of Safety Research, 37(4), 401–411.
  • Hollnagel, E. (2004). Barriers and accident prevention. UK: Ashgate Publishing.
  • Hollnagel, E. (2006). Resilience – the challenge of the unstable. E. Hollnagel, D.D. Woods, ve N. Leveson, (Ed.), Resilience Engineering: Concepts and Precepts (s. 9–18). UK: Ashgate Publishing.
  • Hollnagel, E. (2012). FRAM: The Functional Resonance Analysis Method: Modelling Complex Socio-Technical Systems. UK: Ashgate Publishing.
  • Hollnagel, E., Pruchnicki, S., Woltjer, R. ve Etcher, S. (2008). Analysis of Comair flight 5191 with the functional resonance accident model. In: Proceedings of the 8th International Symposium of the Australian Aviation Psychology Association. Sydney, Australia.
  • IMO (2013). Revised guidelines for formal safety assessment (FSA) for use in the IMO rulemaking process. MSC-MPEC.2/Circ. 12.
  • Kaza Araştırma ve İnceleme Kurulu. (2012). Kaza İnceleme Raporu No: 05/2012. http://www.kaik.gov.tr/, Erişim Tarihi: 18.07.2018.
  • Kontovas, C.A. ve Psaraftis, H.N. (2009). Formal safety assessment: a critical review. Marine technology, 46(1), 45–59.
  • Kuzu, A.C., Akyuz, E. ve Arslan, O. (2019). Application of Fuzzy Fault Tree Analysis (FFTA) to maritime industry: A risk analysing of ship mooring operation. Ocean Engineering, 179, 128–134.
  • Lee, J. ve Chung, H. (2018). A new methodology for accident analysis with human and system interaction based on FRAM: Case studies in maritime domain. Safety Science, 109, 57-66.
  • Li, K.X., Yin, J., Bang, H.S., Yang, Z. ve Wang, J. (2014). Bayesian network with quantitative input for maritime risk analysis. Transportmetrica A: Transport Science, 10(2), 89–118.
  • Merrick, J.R. ve Van Dorp, R. (2006). Speaking the truth in maritime risk assessment. Risk Analysis, 26(1), 223–237.
  • Montewka, J., Goerlandt, F. Ve Kujala, P. (2014). On a systematic perspective on risk for formal safety assessment (FSA). Reliability Engineering and System Safety, 127, 77–85.
  • O'Neil, W.A. (2003). The human element in shipping. WMU Journal of Maritime Affairs, 2(2), 95–97.
  • Patriarca, R., Bergström, J., Gravio, G.D. ve Costantino, F. (2018). Resilience engineering: Current status of the research and future challenges, Safety Science, 102, 79-100.
  • Patriarca, R., Gravio, G.D. ve Costantino, F. (2017). A Monte Carlo evolution of the Functional Resonance Analysis Method (FRAM) to assess performance variability in complex systems. Safety Science, 91, 49–60.
  • Pennie, D., Brook-Carter, N. ve Gibson, W. (2007). Human factors guidance for maintenance. In: Human Factors in Ship Design, Safety and Operation Conference. The Royal Institution of Naval Architects, March, London, UK.
  • Praetorius, G., Hollnagel, E. ve Dahlman, J. (2015). Modelling Vessel Traffic Service to understand resilience in everyday operations. Reliability Engineering and System Safety, 41, 10–21.
  • Psarros, G., Skjong, R. ve Eide, M.S. (2010). Under-reporting of maritime accidents. Accident Analysis and Prevention, 42(2), 619–625.
  • Roberts, S.E., Marlow, P.B. ve Jaremin, B. (2012). Shipping casualties and loss of life in UK merchant shipping, UK second register and foreign flags used by UK shipping companies. Marine Policy, 36(3), 703–712.
  • Ronza, A., Félez, S., Darbra, R.M., Carol, S., Vílchez, J.A. ve Casal, J. (2003). Predicting the frequency of accidents in port areas by developing event trees from historical analysis. Journal of Loss Prevention in the Process Industries, 16(6), 551–560.
  • Sawaragi, T., Horiguchi, Y. ve Hina, A. (2006). Safety analysis of systemic accidents triggered by performance deviation. In: IEEE SICE-ICASE, International Joint Conference. Busan, Korea.
  • Senol, Y.E. ve Sahin, B. (2016). A novel real-time continuous fuzzy fault tree analysis (RCFFTA) model for dynamic environment. Ocean Engineering, 127, 70–81.
  • Smith, D., Veitch, B., Khan, F. ve Taylor, R. (2018). Using the FRAM to Understand Arctic Ship Navigation: Assessing Work Processes During the Exxon Valdez Grounding. Transnav: the International Journal on Marine Navigation and Safety of Sea Transportation, 12(3), 447-457, DOI: 10.12716/1001.12.03.03.
  • Tian, J., Wu, J., Yang, Q. ve Zhao, T. (2016). FRAMA: A safety assessment approach based on Functional Resonance Analysis Method, Safety Science, 85, 41–52.
  • Trucco, P., Cagno, E., Ruggeri, F. ve Grande, O. (2008). A Bayesian Belief Network modelling of organisational factors in risk analysis: a case study in maritime transportation. Reliability Engineering and System Safety, 93(6), 845–856.
  • Ugurlu, O., Yıldırım, U. ve Basar, E. (2015). Analysis of grounding accidents caused by human errors. Journal of Marine Science and Technology, 23(5), 748–760.
  • Woltjer, R. (2008). Resilience assessment based on models of functional resonance. In: Proceedings of the 3rd Symposium on Resilience Engineering. Antibes - Juan - les - Pins, France.
  • Woltjer, R. ve Hollnagel, E. (2007). The Alaska Airlines Flight 261 Accident: a Systemic Analysis of Functional Resonance, International Symposium on Aviation Psychology, Dayton, Ohio.
  • Yang, Z., Bonsall, S. ve Wang, J. (2008). Fuzzy rule-based Bayesian reasoning approach for prioritization of failures in FMEA. IEEE Transactions on Reliability, 57(3), 517–528.
  • Zhang, D., Yan, X.P., Yang, Z.L., Wall, A. ve Wang, J. (2013). Incorporation of formal safety assessment and Bayesian network in navigational risk estimation of the Yangtze River. Reliability Engineering and System Safety, 118, 93–105.
  • Zhang, G. Ve Thai, V.V. (2016). Expert elicitation and Bayesian Network modeling for shipping accidents: A literature review. Safety Science, 87, 53–62.
APA BEŞİKÇİ E, ŞIHMANTEPE A (2020). DENİZ KAZALARININ ÇÖZÜMLENMESİNE GÜNCEL BİR BAKIŞ: FRAM YÖNTEMİ İLE ANALİZ ÖRNEĞİ. , 69 - 90. 10.18613/deudfd.740159
Chicago BEŞİKÇİ Elif BAL,ŞIHMANTEPE Aydın DENİZ KAZALARININ ÇÖZÜMLENMESİNE GÜNCEL BİR BAKIŞ: FRAM YÖNTEMİ İLE ANALİZ ÖRNEĞİ. (2020): 69 - 90. 10.18613/deudfd.740159
MLA BEŞİKÇİ Elif BAL,ŞIHMANTEPE Aydın DENİZ KAZALARININ ÇÖZÜMLENMESİNE GÜNCEL BİR BAKIŞ: FRAM YÖNTEMİ İLE ANALİZ ÖRNEĞİ. , 2020, ss.69 - 90. 10.18613/deudfd.740159
AMA BEŞİKÇİ E,ŞIHMANTEPE A DENİZ KAZALARININ ÇÖZÜMLENMESİNE GÜNCEL BİR BAKIŞ: FRAM YÖNTEMİ İLE ANALİZ ÖRNEĞİ. . 2020; 69 - 90. 10.18613/deudfd.740159
Vancouver BEŞİKÇİ E,ŞIHMANTEPE A DENİZ KAZALARININ ÇÖZÜMLENMESİNE GÜNCEL BİR BAKIŞ: FRAM YÖNTEMİ İLE ANALİZ ÖRNEĞİ. . 2020; 69 - 90. 10.18613/deudfd.740159
IEEE BEŞİKÇİ E,ŞIHMANTEPE A "DENİZ KAZALARININ ÇÖZÜMLENMESİNE GÜNCEL BİR BAKIŞ: FRAM YÖNTEMİ İLE ANALİZ ÖRNEĞİ." , ss.69 - 90, 2020. 10.18613/deudfd.740159
ISNAD BEŞİKÇİ, Elif BAL - ŞIHMANTEPE, Aydın. "DENİZ KAZALARININ ÇÖZÜMLENMESİNE GÜNCEL BİR BAKIŞ: FRAM YÖNTEMİ İLE ANALİZ ÖRNEĞİ". (2020), 69-90. https://doi.org/10.18613/deudfd.740159
APA BEŞİKÇİ E, ŞIHMANTEPE A (2020). DENİZ KAZALARININ ÇÖZÜMLENMESİNE GÜNCEL BİR BAKIŞ: FRAM YÖNTEMİ İLE ANALİZ ÖRNEĞİ. Dokuz Eylül Üniversitesi Denizcilik Fakültesi Dergisi, 12(2020 Özel Sayı), 69 - 90. 10.18613/deudfd.740159
Chicago BEŞİKÇİ Elif BAL,ŞIHMANTEPE Aydın DENİZ KAZALARININ ÇÖZÜMLENMESİNE GÜNCEL BİR BAKIŞ: FRAM YÖNTEMİ İLE ANALİZ ÖRNEĞİ. Dokuz Eylül Üniversitesi Denizcilik Fakültesi Dergisi 12, no.2020 Özel Sayı (2020): 69 - 90. 10.18613/deudfd.740159
MLA BEŞİKÇİ Elif BAL,ŞIHMANTEPE Aydın DENİZ KAZALARININ ÇÖZÜMLENMESİNE GÜNCEL BİR BAKIŞ: FRAM YÖNTEMİ İLE ANALİZ ÖRNEĞİ. Dokuz Eylül Üniversitesi Denizcilik Fakültesi Dergisi, vol.12, no.2020 Özel Sayı, 2020, ss.69 - 90. 10.18613/deudfd.740159
AMA BEŞİKÇİ E,ŞIHMANTEPE A DENİZ KAZALARININ ÇÖZÜMLENMESİNE GÜNCEL BİR BAKIŞ: FRAM YÖNTEMİ İLE ANALİZ ÖRNEĞİ. Dokuz Eylül Üniversitesi Denizcilik Fakültesi Dergisi. 2020; 12(2020 Özel Sayı): 69 - 90. 10.18613/deudfd.740159
Vancouver BEŞİKÇİ E,ŞIHMANTEPE A DENİZ KAZALARININ ÇÖZÜMLENMESİNE GÜNCEL BİR BAKIŞ: FRAM YÖNTEMİ İLE ANALİZ ÖRNEĞİ. Dokuz Eylül Üniversitesi Denizcilik Fakültesi Dergisi. 2020; 12(2020 Özel Sayı): 69 - 90. 10.18613/deudfd.740159
IEEE BEŞİKÇİ E,ŞIHMANTEPE A "DENİZ KAZALARININ ÇÖZÜMLENMESİNE GÜNCEL BİR BAKIŞ: FRAM YÖNTEMİ İLE ANALİZ ÖRNEĞİ." Dokuz Eylül Üniversitesi Denizcilik Fakültesi Dergisi, 12, ss.69 - 90, 2020. 10.18613/deudfd.740159
ISNAD BEŞİKÇİ, Elif BAL - ŞIHMANTEPE, Aydın. "DENİZ KAZALARININ ÇÖZÜMLENMESİNE GÜNCEL BİR BAKIŞ: FRAM YÖNTEMİ İLE ANALİZ ÖRNEĞİ". Dokuz Eylül Üniversitesi Denizcilik Fakültesi Dergisi 12/2020 Özel Sayı (2020), 69-90. https://doi.org/10.18613/deudfd.740159