Yıl: 2021 Cilt: 22 Sayı: 1 Sayfa Aralığı: 75 - 82 Metin Dili: İngilizce DOI: 10.5152/TurkThoracJ.2020.19085 İndeks Tarihi: 09-10-2021

Microbiota - The Unseen Players in Adult Asthmatic Airways

Öz:
Modulation of human lung airway physiology by commensal microbiota has become one of the key mechanisms involved in the pathogenesis of adult asthma. Recent evidence suggests that the composition of respiratory microbiota plays a significant role in the manifestation of adult asthma; however, scientific evidence about the relationship between airway microbial diversity and phenotypes of adult asthma is limited. Further research is needed to understand the interactions between the airway microbiota and host immune response to develop microbiota-based strategies in management of adult asthma. This study reviews the advances in culture-independent methods for detection of airway microbiome, the current data about airway microbiota in healthy individuals and in adult patients with asthma with a focus on bacterial communities, and the future research directions in airway microbiome.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • 1. Morgan XC, Huttenhower C. Chapter 12: Human microbiome analysis. PLoS Comput Biol 2012;8:e1002808. [Crossref]
  • 2. Global Initiative for Asthma (GINA). website: www.ginaasthma. org [homepage on the internet]. Global strategy for asthma management and prevention. [Published on March 2018; Accessed on March 8, 2018].
  • 3. Noverr MC, Huffnagle GB. Does the microbiota regulate immune responses outside the gut? Trends Microbiol 2004;12:562-8. [Crossref]
  • 4. Öztürk AB, Turturice BA, Perkins DL, Finn PW. The Potential for Emerging Microbiome-Mediated Therapeutics in Asthma. Curr Allergy Asthma Rep 2017;17:62. [Crossref]
  • 5. Burns JL, Rolain JM. Culture-based diagnostic microbiology in cystic fibrosis: can we simplify the complexity? J Cyst Fibros 2014;13:1-9. [Crossref]
  • 6. Ranjan R, Rani A, Metwally A, et al. Analysis of the microbiome: Advantages of whole genome shotgun versus 16S amplicon sequencing. Biochem Biophys Res Commun 2016;469:967-77. [Crossref]
  • 7. van Dijk EL, Auger H, Jaszczyszyn Y, Thermes C. Ten years of next-generation sequencing technology. Trends Genet 2014;30:418-26. [Crossref]
  • 8. Cusco A, Catozzi C, Vines J, et al. Microbiota profiling with long amplicons using Nanopore sequencing: full-length 16S rRNA gene and whole rrn operon. F1000Res 2018;7:1755. [Crossref]
  • 9. Jumpstart Consortium Human Microbiome Project Data Generation Working Group. Evaluation of 16S rDNA-based community profiling for human microbiome research. PloS One 2012;7:e39315. [Crossref]
  • 10. Khot PD, Fredricks DN. PCR-based diagnosis of human fungal infections. Expert Rev Anti Infect Ther 2009;7: 1201-21.https:// doi.org/10.1586/eri.09.104
  • 11. Bukin YS, Galachyants YP, Morozov IV, Bukin SV, et al. The effect of 16S rRNA region choice on bacterial community metabarcoding results. Sci Data 2019;6:190007. [Crossref]
  • 12. Martínez-Porchas M, Villalpando-Canchola E, Vargas-Albores F. Significant loss of sensitivity and specificity in the taxonomic classification occurs when short 16S rRNA gene sequences are used. Heliyon 2016;2:e00170. [Crossref]
  • 13. Apprill A, McNally S, Parsons R, Weber L. Minor revision to V4 region SSU rRNA 806R gene primer greatly increases detection of SAR11 bacterioplankton. AME 2015;75:129-37. [Crossref]
  • 14. Earth Microbiome Project.website: http://www.earthmicrobiome.org/[Accessed on February 24, 2020].
  • 15. Luo C, Tsementzi D, Kyrpides N, et al. Direct comparisons of Illumina vs. Roche 454 sequencing technologies on the same microbial community DNA sample. PLoS One 2012;7:e30087. [Crossref]
  • 16. Paliy O, Agans R. Application of phylogenetic microarrays to interrogation of human microbiota. FEMS Microbiol Ecol 2012;79:2-11. [Crossref]
  • 17. Zhou J, He Z, Yang Y, et al. High-throughput metagenomic technologies for complex microbial community analysis: Open and closed formats. mBio 2015;6:e02288-14. [Crossref]
  • 18. Wang M, Cao B, Yu Q, et al. Analysis of the 16S-23S rRNA gene internal transcribed spacer region in Klebsiella species. J Clin Microbiol 2008;46:3555-63. [Crossref]
  • 19. Wagner J, Coupland P, Browne HP, et al. Evaluation of PacBio sequencing for full-length bacterial 16S rRNA gene classification. BMC Microbiol 2016;16:274. [Crossref]
  • 20. Cuscó A, Catozzi C, Viñes J, et al. Microbiota profiling with long amplicons using Nanopore sequencing: full-length 16S rRNA gene and the 16S-ITS-23S of the rrn operon. F1000Res 2018;7:1755. doi: 10.12688/f1000research.16817.2. eCollection 2018. [Crossref]
  • 21. Angiuoli SV, White JR, Matalka M, et al. Resources and costs for microbial sequence analysis evaluated using virtual machines and cloud computing. PLoS One 2011;6:e26624. [Crossref]
  • 22. Ranjan R., Rani A., Kumar R. (2015) Exploration of Microbial Cells: The Storehouse of Bio-wealth Through Metagenomics and Metatranscriptomics. In: Kalia V. (eds) Microbial Factories. Springer, New Delhi. https://doi.org/10.1007/978-81-322- 2598-0_2 [Crossref]
  • 23. Caron DA, Countway PD, Savai P, et al. Defining DNA-based operational taxonomic units for microbial-eukaryote ecology. Appl Environ Microbiol 2009;75:5797-808. [Crossref]
  • 24. Poretsky R, Rodriguez RL, Luo C, et al. Strengths and limitations of 16S rRNA gene amplicon sequencing in revealing temporal microbial community dynamics. PLoS One 2014;9:e93827. [Crossref]
  • 25. Ranjan R, Rani A, Finn PW, Perkins DL. Multiomic Strategies Reveal Diversity and Important Functional Aspects of Human Gut Microbiome. Biomed Res Int 2018;2018:6074918. [Crossref]
  • 26. DiGiulio DB. Diversity of microbes in amniotic fluid. Semin Fetal Neonatal Med 2012; 17:2-11. [Crossref]
  • 27. Aagaard K, Ma J, Antony KM, et al. The Placenta Harbors a Unique Microbiome. Sci Transl Med 2014;6:237ra65. [Crossref]
  • 28. Dickson RP, Erb-Downward JR, Martinez FJ, Huffnagle GB. The Microbiome and the Respiratory Tract. Annu Rev Physiol 2016;78:481-504. [Crossref]
  • 29. Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome. Nature 2012;486:207-14. [Crossref]
  • 30. Bassis CM, Tang AL, Young VB, Pynnonen MA. The nasal cavity microbiota of healthy adults. Microbiome 2014;2:27. [Crossref]
  • 31. Frank DN, Feazel LM, Bessesen MT, et al. The human nasal microbiota and staphylococcus aureus carriage. PLoS One 2010;5:e1059. [Crossref]
  • 32. Zeltner TB, Burri PH. The postnatal development and growth of the human lung. II. Morphology. Respir Physiol 1987;67:269-82. [Crossref]
  • 33. Hasleton PS. The internal surface area of the adult human lung. J Anat 1972;112:391-400.
  • 34. Lighthart B. Mini-review of the concentration variations found inthe alfresco atmospheric bacterial populations. Aerobiologia 2000;16:7-16. [Crossref]
  • 35. Charlson ES, Bittinger K, Haas AR, et al. Topographical continuity of bacterial populations in the healthy human respiratory tract. Am J Respir Crit Care Med 2011;184:957-63. [Crossref]
  • 36. Dickson RP, Erb-Downward JR, Freeman CM, et al. Spatial Variation in the Healthy Human Lung Microbiome and the Adapted Island Model of Lung Biogeography. Ann Am Thorac Soc 2015;12:821-30. [Crossref]
  • 37. Hogan DA, Willger SD, Dolben EL, et al. Analysis of Lung Microbiota in Bronchoalveolar Lavage, Protected Brush and Sputum Samples from Subjects with Mild-To-Moderate Cystic Fibrosis Lung Disease. PloS One 2016;11:e0149998. [Crossref]
  • 38. Bassis CM, Erb-Downward JR, Dickson RP, et al. Analysis of the upper respiratory tract microbiotas as the source of the lung and gastric microbiotas in healthy individuals. mBio 2015;6:e00037. [Crossref]
  • 39. Goleva E, Jackson LP, Harris JK, et al. The effects of airway microbiome on corticosteroid responsiveness in asthma. Am J Respir Crit Care Med 2013;188:1193-201. [Crossref]
  • 40. Huang YJ, Nariya S, Harris JM, et al. The airway microbiome in patients with severe asthma: Associations with disease features and severity. J Allergy Clin Immunol 2015;136:874-84. [Crossref]
  • 41. Denner DR, Sangwan N, Becker JB, et al. Corticosteroid therapy and airflow obstruction influence the bronchial microbiome, which is distinct from that of bronchoalveolar lavage in asthmatic airways. J Allergy Clin Immunol 2016;137:1398-405.e3. [Crossref]
  • 42. Green BJ, Wiriyachaiporn S, Grainge C, et al. Potentially pathogenic airway bacteria and neutrophilic inflammation in treatment resistant severe asthma. PLoS One 2014;9:e100645. [Crossref]
  • 43. Hilty M, Burke C, Pedro H, et al. Disordered microbial communities in asthmatic airways. PLoS One 2010;5:e8578. [Crossref]
  • 44. Huang YJ, Nelson CE, Brodie EL, et al. Airway microbiota and bronchial hyperresponsiveness in patients with suboptimally controlled asthma. J Allergy Clin Immunol 2011;127:372-81. e1-3. [Crossref]
  • 45. Marri PR, Stern DA, Wright AL, et al. Asthma-associated differences in microbial composition of induced sputum. J Allergy Clin Immunol 2013;131:346-52.e1-3. [Crossref]
  • 46. Durack J, Lynch SV, Nariya S, et al. Features of the bronchial bacterial microbiome associated with atopy, asthma, and responsiveness to inhaled corticosteroid treatment. J Allergy Clin Immunol 2017;140:63-75. [Crossref]
  • 47. Teo SM, Mok D, Pham K, et al. The infant nasopharyngeal microbiome impacts severity of lower respiratory infection and risk of asthma development. Cell Host Microbe 2015;17:704- 15. [Crossref]
  • 48. Fazlollahi M, Lee TD, Andrade J, et al. The nasal microbiome in asthma. J Allergy Clin Immunol. 2018;142:834-843.e2. [Crossref]
  • 49. Ramakrishnan VR, Feazel LM, Gitomer SA, et al. The microbiome of the middle meatus in healthy adults. PLoS One 2013;8:e85507. [Crossref]
  • 50. Simpson JL, Daly J, Baines KJ, et al. Airway dysbiosis: Haemophilus influenzae and Tropheryma in poorly controlled asthma. Eur Respir J 2016;47:792-800. [Crossref]
  • 51. Zhang Q, Cox M, Liang Z, et al. Airway Microbiota in Severe Asthma and Relationship to Asthma Severity and Phenotypes. PLoS One 2016;11:e0152724. [Crossref]
  • 52. Millares L, Bermudo G, Perez-Brocal V, et al. The respiratory microbiome in bronchial mucosa and secretions from severe IgE-mediated asthma patients. BMC Microbiol 2017;17:20. [Crossref]
  • 53. Taylor SL, Leong LEX, Choo JM, et al. Inflammatory phenotypes in patients with severe asthma are associated with distinct airway microbiology. J Allergy Clin Immunol 2018;141:94-103. e15. [Crossref]
  • 54. Morris A, Beck JM, Schloss PD, et al. Comparison of the Respiratory Microbiome in Healthy Nonsmokers and Smokers. Am J Respir Crit Care Med 2013;187:1067-75. [Crossref]
  • 55. Munck C, Helby J, Westergaard CG, et al. Smoking Cessation and the Microbiome in Induced Sputum Samples from Cigarette Smoking Asthma Patients. PLoS One 2016;11:e0158622. [Crossref]
APA Ozturk A, Ranjan R, Rani A, YAZICI D, Bavbek S (2021). Microbiota - The Unseen Players in Adult Asthmatic Airways. , 75 - 82. 10.5152/TurkThoracJ.2020.19085
Chicago Ozturk Ayse Bilge,Ranjan Ravi,Rani Asha,YAZICI Duygu,Bavbek Sevim Microbiota - The Unseen Players in Adult Asthmatic Airways. (2021): 75 - 82. 10.5152/TurkThoracJ.2020.19085
MLA Ozturk Ayse Bilge,Ranjan Ravi,Rani Asha,YAZICI Duygu,Bavbek Sevim Microbiota - The Unseen Players in Adult Asthmatic Airways. , 2021, ss.75 - 82. 10.5152/TurkThoracJ.2020.19085
AMA Ozturk A,Ranjan R,Rani A,YAZICI D,Bavbek S Microbiota - The Unseen Players in Adult Asthmatic Airways. . 2021; 75 - 82. 10.5152/TurkThoracJ.2020.19085
Vancouver Ozturk A,Ranjan R,Rani A,YAZICI D,Bavbek S Microbiota - The Unseen Players in Adult Asthmatic Airways. . 2021; 75 - 82. 10.5152/TurkThoracJ.2020.19085
IEEE Ozturk A,Ranjan R,Rani A,YAZICI D,Bavbek S "Microbiota - The Unseen Players in Adult Asthmatic Airways." , ss.75 - 82, 2021. 10.5152/TurkThoracJ.2020.19085
ISNAD Ozturk, Ayse Bilge vd. "Microbiota - The Unseen Players in Adult Asthmatic Airways". (2021), 75-82. https://doi.org/10.5152/TurkThoracJ.2020.19085
APA Ozturk A, Ranjan R, Rani A, YAZICI D, Bavbek S (2021). Microbiota - The Unseen Players in Adult Asthmatic Airways. Turkish Thoracic Journal, 22(1), 75 - 82. 10.5152/TurkThoracJ.2020.19085
Chicago Ozturk Ayse Bilge,Ranjan Ravi,Rani Asha,YAZICI Duygu,Bavbek Sevim Microbiota - The Unseen Players in Adult Asthmatic Airways. Turkish Thoracic Journal 22, no.1 (2021): 75 - 82. 10.5152/TurkThoracJ.2020.19085
MLA Ozturk Ayse Bilge,Ranjan Ravi,Rani Asha,YAZICI Duygu,Bavbek Sevim Microbiota - The Unseen Players in Adult Asthmatic Airways. Turkish Thoracic Journal, vol.22, no.1, 2021, ss.75 - 82. 10.5152/TurkThoracJ.2020.19085
AMA Ozturk A,Ranjan R,Rani A,YAZICI D,Bavbek S Microbiota - The Unseen Players in Adult Asthmatic Airways. Turkish Thoracic Journal. 2021; 22(1): 75 - 82. 10.5152/TurkThoracJ.2020.19085
Vancouver Ozturk A,Ranjan R,Rani A,YAZICI D,Bavbek S Microbiota - The Unseen Players in Adult Asthmatic Airways. Turkish Thoracic Journal. 2021; 22(1): 75 - 82. 10.5152/TurkThoracJ.2020.19085
IEEE Ozturk A,Ranjan R,Rani A,YAZICI D,Bavbek S "Microbiota - The Unseen Players in Adult Asthmatic Airways." Turkish Thoracic Journal, 22, ss.75 - 82, 2021. 10.5152/TurkThoracJ.2020.19085
ISNAD Ozturk, Ayse Bilge vd. "Microbiota - The Unseen Players in Adult Asthmatic Airways". Turkish Thoracic Journal 22/1 (2021), 75-82. https://doi.org/10.5152/TurkThoracJ.2020.19085