Yıl: 2021 Cilt: 8 Sayı: 3 Sayfa Aralığı: 775 - 786 Metin Dili: İngilizce DOI: 10.18596/jotcsa.940424 İndeks Tarihi: 29-07-2022

Non-destructive Detection of Sesame Oil Adulteration by Portable FTNIR, FT-MIR, and Raman Spectrometers Combined with Chemometrics

Öz:
Edible oils are often adulterated with fixed oils because of their high quality and price. Sesameoil is prone to adulteration due to its high commodity value and popularity. Therefore, a rapid, simple,and non-invasive method to detect adulteration in sesame oil is necessary for quality control purposes.Handheld and portable FT-NIR, FT-MIR, and Raman spectrometers are easy to operate, non-destructive,rapid, and easy to transport for in-situ assessments as well as being cheaper alternatives to traditionalinstruments. This study aimed to evaluate three different vibrational spectroscopic techniques indetecting sesame oil adulteration with sunflower and canola oil. Sesame oils were adulterated with fixedoils at different concentrations (0 – 25%) (w/w). Spectra were collected with portable devices andanalyzed using Soft Independent Modelling of Class Analogy (SIMCA) to generate a classification model toauthenticate pure sesame oil and Partial Least Squares Regression (PLSR) to predict the levels of theadulterant. For confirmation, the fatty acid profile of the oils was determined by gas chromatography(GC). In all three instruments, SIMCA provided distinct clusters for pure sesame oils and adulteratedsamples with interclass distance (ICD) over 3. Furthermore, FT-NIR and FT-MIR showed excellentperformance in predicting adulterant levels with rval>0.96. Specifically, the FT-MIR unit provided moreprecise classification and PLSR prediction models over FT-NIR and Raman units. Still, all the units can beused as an alternative method to traditional methods such as GC, GC-MS, etc. These units showed greatpotential for in-situ surveillance to detect sesame oil adulterations.
Anahtar Kelime: Raman NIR MIR adulteration portable devices sesame oil

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • 1. Ozulku G, Yildirim RM, Toker OS, Karasu S, Durak MZ. Rapid detection of adulteration of cold pressed sesame oil adultered with hazelnut, canola, and sunflower oils using ATR-FTIR spectroscopy combined with chemometric. Food Control. 2017 Dec;82:212–6. DOI: https://doi.org/10.1016/j.foodcont.2017.06.034.
  • 2. Wang R, Liu K, Wang X, Tan M. Detection of Sesame Oil Adulteration Using Low-Field Nuclear Magnetic Resonance and Chemometrics. International Journal of Food Engineering. 2019 Jul 26;15(7):20180349. DOI: https://doi.org/10.1515/ijfe-2018-0349.
  • 3. Gharby S, Harhar H, Bouzoubaa Z, Asdadi A, El Yadini A, Charrouf Z. Chemical characterization and oxidative stability of seeds and oil of sesame grown in Morocco. Journal of the Saudi Society of Agricultural Sciences. 2017 Apr;16(2):105–11. DOI: https://doi.org/10.1016/j.jssas.2015.03.004.
  • 4. Zhang L, Shuai Q, Li P, Zhang Q, Ma F, Zhang W, et al. Ion mobility spectrometry fingerprints: A rapid detection technology for adulteration of sesame oil. Food Chemistry. 2016 Feb;192:60–6. DOI: https://doi.org/10.1016/j.foodchem.2015.06.096.
  • 5. Warra A. Sesame (Sesamum indicum L.) Seed Oil Methods of Extraction and its Prospects in Cosmetic Industry: A Review. Bayero J Pure App Sci. 2012 Apr 6;4(2):164–8. DOI: https://doi.org/10.4314/bajopas.v4i2.33.
  • 6. FAO. FAOSTAT online statistical service [Internet]. FAO; 2018. Available from: http://faostat.fao.org/.
  • 7. Seo H-Y, Ha J, Shin D-B, Shim S-L, No K-M, Kim K-S, et al. Detection of Corn Oil in Adulterated Sesame Oil by Chromatography and Carbon Isotope Analysis. J Am Oil Chem Soc. 2010 Jun;87(6):621–6. DOI: https://doi.org/10.1007/s11746-010-1545-6.
  • 8. Aykas DP, Karaman AD, Keser B, RodriguezSaona L. Non-Targeted Authentication Approach for Extra Virgin Olive Oil. Foods. 2020 Feb 20;9(2):221. DOI: https://doi.org/10.3390/foods9020221.
  • 9. Subramanian A, Alvarez VB, Harper WJ, Rodriguez-Saona LE. Monitoring amino acids, organic acids, and ripening changes in Cheddar cheese using Fourier-transform infrared spectroscopy. International Dairy Journal. 2011 Jun;21(6):434–40. DOI: https://doi.org/10.1016/j.idairyj.2010.12.012.
  • 10. Tengstrand E, Rosén J, Hellenäs K-E, Åberg KM. A concept study on non-targeted screening for chemical contaminants in food using liquid chromatography–mass spectrometry in combination with a metabolomics approach. Anal Bioanal Chem. 2013 Feb;405(4):1237–43. DOI: https://doi.org/10.1007/s00216-012-6506-5.
  • 11. Quiñones-Islas N, Meza-Márquez OG, OsorioRevilla G, Gallardo-Velazquez T. Detection of adulterants in avocado oil by Mid-FTIR spectroscopy and multivariate analysis. Food Research International. 2013 Apr;51(1):148–54. DOI: https://doi.org/10.1016/j.foodres.2012.11.037.
  • 12. Chen H, Lin Z, Tan C. Fast quantitative detection of sesame oil adulteration by nearinfrared spectroscopy and chemometric models. Vibrational Spectroscopy. 2018 Nov;99:178–83. DOI: https://doi.org/10.1016/j.vibspec.2018.10.003.
  • 13. Rodriguez-Saona L, Aykas DP, Borba KR, Urtubia A. Miniaturization of optical sensors and their potential for high-throughput screening of foods. Current Opinion in Food Science. 2020 Feb;31:136–50. DOI: https://doi.org/10.1016/j.cofs.2020.04.008.
  • 14. Miaw CSW, Sena MM, Souza SVC de, Ruisanchez I, Callao MP. Variable selection for multivariate classification aiming to detect individual adulterants and their blends in grape nectars. Talanta. 2018 Dec;190:55–61. DOI: https://doi.org/10.1016/j.talanta.2018.07.078.
  • 15. Ichihara K, Shibahara A, Yamamoto K, Nakayama T. An improved method for rapid analysis of the fatty acids of glycerolipids. Lipids. 1996 May;31(5):535–9. DOI: https://doi.org/10.1007/BF02522648.
  • 16. De Maesschalck R, Candolfi A, Massart DL, Heuerding S. Decision criteria for soft independent modelling of class analogy applied to near infrared data. Chemometrics and Intelligent Laboratory Systems. 1999 Apr;47(1):65–77. DOI: https://doi.org/10.1016/S0169-7439(98)00159-2.
  • 17. Wold S. Pattern recognition by means of disjoint principal components models. Pattern Recognition. 1976 Jul;8(3):127–39. DOI: https://doi.org/10.1016/0031-3203(76)90014-5.
  • 18. Lavine BK. Clustering and Classification of Analytical Data. In: Meyers RA, editor. Encyclopedia of Analytical Chemistry [Internet]. Chichester, UK: John Wiley & Sons, Ltd; 2000 [cited 2021 Jul 17]. p. a5204. Available from: https://onlinelibrary.wiley.com/doi/10.1002/97804 70027318.a5204.
  • 19. Ballabio D, Todeschini R. Infrared Spectroscopy for Food Quality Analysis and Control Multivariate Classification for Qualitative Analysis. In: Sun D-W, editor. Infrared Spectroscopy for Food Quality Analysis and Control. 1st edition. Burlington, MA: Elsevier; 2009. p. 83–104. ISBN: 978-0-12- 374136-3.
  • 20. Haaland DM, Thomas EV. Partial least-squares methods for spectral analyses. 1. Relation to other quantitative calibration methods and the extraction of qualitative information. Anal Chem. 1988 Jun 1;60(11):1193–202. DOI: https://doi.org/10.1021/ac00162a020.
  • 21. Jong SD. PLS fits closer than PCR. J Chemometrics. 1993 Nov;7(6):551–7. DOI: https://doi.org/10.1515/jpme.1998.26.4.325.
  • 22. Brereton RG. Introduction to multivariate calibration in analytical chemistry. Analyst. 2000;125(11):2125–54. DOI: https://doi.org/10.1039/b003805i.
  • 23. Wold S, Sjöström M, Eriksson L. PLSregression: a basic tool of chemometrics. Chemometrics and Intelligent Laboratory Systems. 2001 Oct;58(2):109–30. DOI: https://doi.org/10.1016/S0169-7439(01)00155-1.
  • 24. Hourant P, Baeten V, Morales MT, Meurens M, Aparicio R. Oil and Fat Classification by Selected Bands of Near-Infrared Spectroscopy. Appl Spectrosc. 2000 Aug;54(8):1168–74. URL: http://as.osa.org/abstract.cfm?URI=as-54-8-1168.
  • 25. Yang H, Irudayaraj J, Paradkar M. Discriminant analysis of edible oils and fats by FTIR, FT-NIR and FT-Raman spectroscopy. Food Chemistry. 2005 Nov;93(1):25–32. DOI: https://doi.org/10.1016/j.foodchem.2004.08.039.
  • 26. Aykas DP, Rodriguez-Saona LE. Assessing potato chip oil quality using a portable infrared spectrometer combined with pattern recognition analysis. Anal Methods. 2016;8(4):731–41. DOI: https://doi.org/10.1039/C5AY02387D.
  • 27. Rodriguez-Saona LE, Giusti MM, Shotts M. Advances in Infrared Spectroscopy for Food Authenticity Testing. In: Advances in Food Authenticity Testing [Internet]. Elsevier; 2016 [cited 2021 Jul 17]. p. 71–116. Available from: https://linkinghub.elsevier.com/retrieve/pii/B9780 081002209000047
  • 28. Covaciu F-D, Berghian-Grosan C, Feher I, Magdas DA. Edible Oils Differentiation Based on the Determination of Fatty Acids Profile and Raman Spectroscopy—A Case Study. Applied Sciences. 2020 Nov 24;10(23):8347. DOI: https://doi.org/10.3390/app10238347.
  • 29. Abdi H. Partial least squares regression and projection on latent structure regression (PLS Regression). WIREs Comp Stat. 2010 Jan;2(1):97– 106. DOI: https://doi.org/10.1002/wics.51.
  • 30. Urbanocuadrado M, Luquedecastro M, Perezjuan P, Gomeznieto M. Comparison and joint use of near infrared spectroscopy and Fourier transform mid infrared spectroscopy for the determination of wine parameters. Talanta. 2005 Mar 31;66(1):218–24. DOI: https://doi.org/10.1016/j.talanta.2004.11.011.
APA MENEVSEOGLU A (2021). Non-destructive Detection of Sesame Oil Adulteration by Portable FTNIR, FT-MIR, and Raman Spectrometers Combined with Chemometrics. , 775 - 786. 10.18596/jotcsa.940424
Chicago MENEVSEOGLU AHMED Non-destructive Detection of Sesame Oil Adulteration by Portable FTNIR, FT-MIR, and Raman Spectrometers Combined with Chemometrics. (2021): 775 - 786. 10.18596/jotcsa.940424
MLA MENEVSEOGLU AHMED Non-destructive Detection of Sesame Oil Adulteration by Portable FTNIR, FT-MIR, and Raman Spectrometers Combined with Chemometrics. , 2021, ss.775 - 786. 10.18596/jotcsa.940424
AMA MENEVSEOGLU A Non-destructive Detection of Sesame Oil Adulteration by Portable FTNIR, FT-MIR, and Raman Spectrometers Combined with Chemometrics. . 2021; 775 - 786. 10.18596/jotcsa.940424
Vancouver MENEVSEOGLU A Non-destructive Detection of Sesame Oil Adulteration by Portable FTNIR, FT-MIR, and Raman Spectrometers Combined with Chemometrics. . 2021; 775 - 786. 10.18596/jotcsa.940424
IEEE MENEVSEOGLU A "Non-destructive Detection of Sesame Oil Adulteration by Portable FTNIR, FT-MIR, and Raman Spectrometers Combined with Chemometrics." , ss.775 - 786, 2021. 10.18596/jotcsa.940424
ISNAD MENEVSEOGLU, AHMED. "Non-destructive Detection of Sesame Oil Adulteration by Portable FTNIR, FT-MIR, and Raman Spectrometers Combined with Chemometrics". (2021), 775-786. https://doi.org/10.18596/jotcsa.940424
APA MENEVSEOGLU A (2021). Non-destructive Detection of Sesame Oil Adulteration by Portable FTNIR, FT-MIR, and Raman Spectrometers Combined with Chemometrics. Journal of the Turkish Chemical Society, Section A: Chemistry, 8(3), 775 - 786. 10.18596/jotcsa.940424
Chicago MENEVSEOGLU AHMED Non-destructive Detection of Sesame Oil Adulteration by Portable FTNIR, FT-MIR, and Raman Spectrometers Combined with Chemometrics. Journal of the Turkish Chemical Society, Section A: Chemistry 8, no.3 (2021): 775 - 786. 10.18596/jotcsa.940424
MLA MENEVSEOGLU AHMED Non-destructive Detection of Sesame Oil Adulteration by Portable FTNIR, FT-MIR, and Raman Spectrometers Combined with Chemometrics. Journal of the Turkish Chemical Society, Section A: Chemistry, vol.8, no.3, 2021, ss.775 - 786. 10.18596/jotcsa.940424
AMA MENEVSEOGLU A Non-destructive Detection of Sesame Oil Adulteration by Portable FTNIR, FT-MIR, and Raman Spectrometers Combined with Chemometrics. Journal of the Turkish Chemical Society, Section A: Chemistry. 2021; 8(3): 775 - 786. 10.18596/jotcsa.940424
Vancouver MENEVSEOGLU A Non-destructive Detection of Sesame Oil Adulteration by Portable FTNIR, FT-MIR, and Raman Spectrometers Combined with Chemometrics. Journal of the Turkish Chemical Society, Section A: Chemistry. 2021; 8(3): 775 - 786. 10.18596/jotcsa.940424
IEEE MENEVSEOGLU A "Non-destructive Detection of Sesame Oil Adulteration by Portable FTNIR, FT-MIR, and Raman Spectrometers Combined with Chemometrics." Journal of the Turkish Chemical Society, Section A: Chemistry, 8, ss.775 - 786, 2021. 10.18596/jotcsa.940424
ISNAD MENEVSEOGLU, AHMED. "Non-destructive Detection of Sesame Oil Adulteration by Portable FTNIR, FT-MIR, and Raman Spectrometers Combined with Chemometrics". Journal of the Turkish Chemical Society, Section A: Chemistry 8/3 (2021), 775-786. https://doi.org/10.18596/jotcsa.940424