DÜŞÜK ISIL DEĞERLİ LİNYİT VE ATIK BİYOKÜTLENİN DUMANSIZ YAKIT OLARAK KULLANILABİLİRLİĞİNİN ARAŞTIRILMASI

Yıl: 2021 Cilt: 26 Sayı: 1 Sayfa Aralığı: 1 - 14 Metin Dili: Türkçe DOI: 10.17482/uumfd.805313 İndeks Tarihi: 29-07-2022

DÜŞÜK ISIL DEĞERLİ LİNYİT VE ATIK BİYOKÜTLENİN DUMANSIZ YAKIT OLARAK KULLANILABİLİRLİĞİNİN ARAŞTIRILMASI

Öz:
Enerji, bir toplumun en önemli temel ihtiyaçlarından biridir. Gelişmekte olan ve az gelişmiş ülkelerdebu enerji ihtiyacının çoğu fosil enerji kaynaklarından karşılanmaktadır. Bu kaynaklar, hem sınırlı hem deçevreyi olumsuz etkiledikleri için, sürekli olarak kullanılmaları uygun değildir. Enerjinin sürekliliği içinbiyokütle gibi yenilenebilir enerji kaynaklarından da maksimum düzeyde faydalanmak gereklidir.Biyokütle; doğrudan yakma, piroliz ve gazlaştırma gibi bazı çevirim teknikleri kullanılarak katı, sıvı ve gazyakıtlara dönüştürülebilmektedir. Biyokütledeki yüksek H içeriği, kömürle birlikte pirolizi sırasındahidrojen kaynağı olarak kullanılmaktadır. Piroliz esnasında biyokütleden yayılan H ve OH radikalleri,kömürün aromatik halkalarındaki kırılmaları desteklemektedir. Kömür ile biyokütlenin pirolizinden eldeedilen katı ürünün yakılmasıyla atmosferi kirleten SO2 ve NOx gibi içeriklerin azaltılması mümkündür. Buçalışmada, linyit ve ceviz kabuğunun farklı karışım oranları ve sıcaklıklarda pirolizi gerçekleştirilmiştir.Elde edilen katı ürünün, kalorifik değerleri ve C, S, N içerikleri belirlenmiştir. Artan biyokütle oranıyla,dumansız yakıtta olumlu değişiklikler olduğu belirlenmiştir.
Anahtar Kelime: Biyokütle Dumansız yakıt Ceviz kabuğu Linyit Piroliz

Investigation of the Usability of Low Calorific Value Lignite and Waste Biomass as Smokeless Fuel

Öz:
Energy is one of the most important basic needs of society. In developing and underdeveloped countries, most of this energy need is met by fossil energy resources. These resources are not suitable for continuous use as they are both limited and harm the environment. For the continuity of energy, it is necessary to make maximum use of renewable energy sources such as biomass. It can be converted into solid, liquid and gaseous fuels by using some conversion techniques such as direct burning, pyrolysis and gasification. The high content of H in biomass is used as a hydrogen source during pyrolysis with coal. H and OH radicals released from biomass during pyrolysis support the cracks in the aromatic rings of the coal. By burning the solid product obtained from the pyrolysis of coal and biomass, it is possible to reduce the contents such as SO2 and NOx that pollute the atmosphere. In this study, pyrolysis of lignite and walnut shell at different mixing ratios and temperatures was carried out. The energy values and C, S, N contents of the obtained solid product were determined. It has been determined that there are positive changes in smokeless fuel with the increasing biomass ratio.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • 1. Acar, S. ve Kılıç, M. (2019) Eğirdir Yöresinde Bulunan Linyit Kömürlerine Fizikokimyasal İşlemler Uygulanarak Elde Edilen Adsorbent ile Boyar Madde Gideriminin Araştırılması, Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 23 (1), 207-226. doi: 10.19113/sdufenbed.485102
  • 2. Akgül, G. (2017) Biyokömür: Üretimi ve Kullanım Alanları, S.Ü. Mühendislik Bilim ve Teknoloji Dergisi, 5 (4), 485-499. doi:10.15317Scitech.2017.107
  • 3. Apaydın Varol, E., Pütün, E. ve Pütün, A.E. (2007) Slow Pyrolysis of Pistachio Shell, Fuel, 86, 1892-1899. doi:10.1016/j.fuel.2006.11.041
  • 4. Biagini, E., Lippi, F., Petarca, L. And Tognotti, I. (2002) Devolatilization Rate of Biomasses and Coal-Biomass Blends: An Experimental Investigation, Fuel, 81, 1041-1050. doi:10.1016/S0016-2361(01)00204-6
  • 5. Blesa, M.J., Miranda, J.L., Moliner, R., Izquierdo, M.T. ve Palacios, J.M. (2003) LowTemperature Co-Pyrolysis of A Low-Rank Coal and Biomass to Prepare Smokeless Fuel Briquettes, Journal of Analytical and Applied Pyrolysis, 70, 665-677. doi:10.1016/S0165- 2370(03)00047-0
  • 6. Bridgwater, A. ve Peacocke, G. (2000) Fast pyrolysis processes for biomass, Renewable and Sustainable Energy Reviews, 4(1), 1-73. doi:10.1016/S1364-0321(99)00007-6
  • 7. Ebrahimi, A., Zarei, A., Fatahi, R. Ve Varnamkhasti, M.G. (2009) Study on some morphological and physical attributes of walnut used in mass models, Scientia Horticulturae, 121(4), 490-494. doi:10.1016/j.scienta.2009.02.021
  • 8. Elbeyli, İ.Y. ve Pişkin, S. (2006) Combustion and pyrolysis characteristics of Tunçbilek lignite, Journal of Thermal Analysis and Calorimetry, 83, 721-726.
  • 9. Haykırı-Açma, H. ve Yaman, S. (2007) Synergy in Devolatilization Characteristics of Lignite and Hazelnut Shell During Co-Pyrolysis, Fuel, 86, 373-380. doi:10.1016/j.fuel.2006.07.005
  • 10. Haykırı-Açma, H. ve Yaman, S. (2010) Interaction Between Biomass and Different Rank Coals During Co-Pyrolysis, Renewable Energy, 35, 288-292. doi:10.1016/j.renene.2009.08.001
  • 11. Jones, J.M., Kubacki, M., Kubica, K., Ross, A.B. ve Williams, A. (2005) Devolatilisation Characteristisc of Coal and Biomass Blends, Journal of Analytical and Applied Pyrolysis, 74, 502-511. doi:10.1016/j.jaap.2004.11.018
  • 12. Labuckas, D.O., Maestri, D.M., Perello, M., Martinez, M.L. ve Lamarque, A.L. (2008) Phenolics from walnut (Juglans regia L.) kernels: Antioxidant activity and interactions with proteins, Food Chemistry, 107(2), 607-612. doi:10.1016/j.foodchem.2007.08.051
  • 13. Leonard, J.W. and Hardinge, B.C. (1991). Coal Preparation (5th Edition). Society for Mining, Metallurgy and Exploration Inc., Colorado.
  • 14. Lievens, C., Ci, D., Bai, Y., Ma, L., Zhang, R., Chen, Y.J., Gai, Q., Long, Y. ve Guo, X. (2013) A study of slow pyrolysis of one low rank coal via pyrolysis-GC/MS, Fuel Processing Technology, 116, 85-93. doi:10.1016/j.fuproc.2013.04.026
  • 15. Liu, S., Chen, X., Liu, A., Wang, L. ve Yu, G. (2015) Co-pyrolysis characteristic of biomass and bituminous coal, Bioresource Technology, 179, 414–420. doi:10.1016/j.biortech.2014.12.025
  • 16. Miao, Z., Wu, G., Li,P., Meng, X. ve Zheng, Z. (2012) Investigation into Co-Pyrolysis Characteristics of Oil Shale and Coal, International Journal of Mining Science and Technology, 22, 245-249. doi:10.1016/j.ijmst.2011.09.003
  • 17. Miller, B.G. (2005). Coal Energy Systems. Elsevier Academic Press, San Diego.
  • 18. Niu, Z., Liu, G., Yin, H., Wu, D. ve Zhou, C. (2016) Investigation of mechanism and kinetics of non-isothermal low temperature pyrolysis of perhydrous bituminous coal by in-situ FTIR, Fuel, 172, 1–10. doi:10.1016/j.fuel.2016.01.007
  • 19. Odeh, A. O. (2015). Oualitative and quantitative ATR-FTIR analysis and its application to coal char of different ranks, Journal of Fuel Chemistry and Technology, 43, 129-137. doi:10.1016/S1872-5813(15)30001-3
  • 20. Özbayoğlu, G., Depci, T. ve Ataman, N. (2009) Effect of microwave radiation on coal flotation, Energy Sources Part A, 31, 492-499. doi:10.1080/15567030701531337
  • 21. Plis, A., Lasek, J., Skawinska, A. ve Zuwała, J. (2015) Thermochemical and kinetic analysis of the pyrolysis process in Cladophora glomerata algae, Journal of Analytical and Applied Pyrolysis, 115, 166–174. doi:10.1016/j.jaap.2015.07.013
  • 22. Qi, Y., Hoadley, A.F.A., Chaffee, A.L. ve Garnier, G. (2011) Characterisation of Lignite as an Industrial Adsorbent, Fuel, 90, 1567-1574. doi:10.1016/j.fuel.2011.01.015
  • 23. Quan, C. ve Gao, N. (2016) Copyrolysis of Biomass and Coal: A Review of Effects of Copyrolysis Parameters, Product Properties, and Synergistic Mechanisms, Hindawi Publishing Corporation BioMed Research International, Special Issue, 1-11. doi:10.1155/2016/6197867
  • 24. Sonobe, T., Worasuwannarak, N. ve Pipatmanomai, S. (2008) Synergies in Co-Pyrolysis of Thai Lignite and Corncob, Fuel Processing Technology, 89, 1371-1378. doi:10.1016/j.fuproc.2008.06.006
  • 25. Spliethoff, H. and Hein, K.R.G. (1998) Effect of Co-Combustion of Biomass on Emissions in Pulverized Fuel Furnaces, Fuel Processing Technology, 54, 189-205. doi:10.1016/S0378- 3820(97)00069-6
  • 26. Srinivasan, A. ve Viraraghavan, T. (2008) Removal of oil by walnut shell media. Bioresource Technology, 99(17), 8217-8220. doi:10.1016/j.biortech.2008.03.072
  • 27. Yang, T. ve Lua, A.C. (2003) Characteristics of Activated Carbons Prepared from Pistachionut Shells by Physical Activation, Journal of Colloid and Interface Science, 267, 408-417. doi:10.1016/S0021-9797(03)00689-1
  • 28. Yuan, S., Dai, Z., Zhou, Z., Chen, X., Yu, G. ve Wang, F. (2012) Rapid Co-Pyrolysis of Rice Straw and A Bituminous Coal in A High-Frequency Furnace and Gasification of the Residual Char, Bioresource Technology, 109, 188-197. doi:10.1016/j.biortech.2012.01.019
APA Aksoğan Korkmaz A (2021). DÜŞÜK ISIL DEĞERLİ LİNYİT VE ATIK BİYOKÜTLENİN DUMANSIZ YAKIT OLARAK KULLANILABİLİRLİĞİNİN ARAŞTIRILMASI. , 1 - 14. 10.17482/uumfd.805313
Chicago Aksoğan Korkmaz Aydan DÜŞÜK ISIL DEĞERLİ LİNYİT VE ATIK BİYOKÜTLENİN DUMANSIZ YAKIT OLARAK KULLANILABİLİRLİĞİNİN ARAŞTIRILMASI. (2021): 1 - 14. 10.17482/uumfd.805313
MLA Aksoğan Korkmaz Aydan DÜŞÜK ISIL DEĞERLİ LİNYİT VE ATIK BİYOKÜTLENİN DUMANSIZ YAKIT OLARAK KULLANILABİLİRLİĞİNİN ARAŞTIRILMASI. , 2021, ss.1 - 14. 10.17482/uumfd.805313
AMA Aksoğan Korkmaz A DÜŞÜK ISIL DEĞERLİ LİNYİT VE ATIK BİYOKÜTLENİN DUMANSIZ YAKIT OLARAK KULLANILABİLİRLİĞİNİN ARAŞTIRILMASI. . 2021; 1 - 14. 10.17482/uumfd.805313
Vancouver Aksoğan Korkmaz A DÜŞÜK ISIL DEĞERLİ LİNYİT VE ATIK BİYOKÜTLENİN DUMANSIZ YAKIT OLARAK KULLANILABİLİRLİĞİNİN ARAŞTIRILMASI. . 2021; 1 - 14. 10.17482/uumfd.805313
IEEE Aksoğan Korkmaz A "DÜŞÜK ISIL DEĞERLİ LİNYİT VE ATIK BİYOKÜTLENİN DUMANSIZ YAKIT OLARAK KULLANILABİLİRLİĞİNİN ARAŞTIRILMASI." , ss.1 - 14, 2021. 10.17482/uumfd.805313
ISNAD Aksoğan Korkmaz, Aydan. "DÜŞÜK ISIL DEĞERLİ LİNYİT VE ATIK BİYOKÜTLENİN DUMANSIZ YAKIT OLARAK KULLANILABİLİRLİĞİNİN ARAŞTIRILMASI". (2021), 1-14. https://doi.org/10.17482/uumfd.805313
APA Aksoğan Korkmaz A (2021). DÜŞÜK ISIL DEĞERLİ LİNYİT VE ATIK BİYOKÜTLENİN DUMANSIZ YAKIT OLARAK KULLANILABİLİRLİĞİNİN ARAŞTIRILMASI. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 26(1), 1 - 14. 10.17482/uumfd.805313
Chicago Aksoğan Korkmaz Aydan DÜŞÜK ISIL DEĞERLİ LİNYİT VE ATIK BİYOKÜTLENİN DUMANSIZ YAKIT OLARAK KULLANILABİLİRLİĞİNİN ARAŞTIRILMASI. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 26, no.1 (2021): 1 - 14. 10.17482/uumfd.805313
MLA Aksoğan Korkmaz Aydan DÜŞÜK ISIL DEĞERLİ LİNYİT VE ATIK BİYOKÜTLENİN DUMANSIZ YAKIT OLARAK KULLANILABİLİRLİĞİNİN ARAŞTIRILMASI. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, vol.26, no.1, 2021, ss.1 - 14. 10.17482/uumfd.805313
AMA Aksoğan Korkmaz A DÜŞÜK ISIL DEĞERLİ LİNYİT VE ATIK BİYOKÜTLENİN DUMANSIZ YAKIT OLARAK KULLANILABİLİRLİĞİNİN ARAŞTIRILMASI. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi. 2021; 26(1): 1 - 14. 10.17482/uumfd.805313
Vancouver Aksoğan Korkmaz A DÜŞÜK ISIL DEĞERLİ LİNYİT VE ATIK BİYOKÜTLENİN DUMANSIZ YAKIT OLARAK KULLANILABİLİRLİĞİNİN ARAŞTIRILMASI. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi. 2021; 26(1): 1 - 14. 10.17482/uumfd.805313
IEEE Aksoğan Korkmaz A "DÜŞÜK ISIL DEĞERLİ LİNYİT VE ATIK BİYOKÜTLENİN DUMANSIZ YAKIT OLARAK KULLANILABİLİRLİĞİNİN ARAŞTIRILMASI." Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 26, ss.1 - 14, 2021. 10.17482/uumfd.805313
ISNAD Aksoğan Korkmaz, Aydan. "DÜŞÜK ISIL DEĞERLİ LİNYİT VE ATIK BİYOKÜTLENİN DUMANSIZ YAKIT OLARAK KULLANILABİLİRLİĞİNİN ARAŞTIRILMASI". Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 26/1 (2021), 1-14. https://doi.org/10.17482/uumfd.805313