Yıl: 2021 Cilt: 21 Sayı: 2 Sayfa Aralığı: 242 - 249 Metin Dili: İngilizce DOI: 10.5152/electrica.2021.20072 İndeks Tarihi: 14-10-2021

A Path Loss Model for Link Budget Analysis of Indoor Visible Light Communications

Öz:
In the context of beyond 5G indoor communication systems, visible light communications (VLC) has emerged as a viable supplement for existing radiofrequency-based systems and as an enabler for high data rate communications. However, the existing indoor VLC systems are limited by detrimental outagescaused by fluctuations in the VLC channel-gain because of user mobility. In this study, we proposed a tractable path loss model for indoor VLC that reflectsthe effect of room size and coating material of surfaces. We performed an extensive advanced ray tracing simulation to obtain the channel impulse responseswithin a room and presented a path loss model as a function of distance, room size, and coating material through curve fitting. In addition, path lossparameters such as the path loss exponent and the standard deviation of the shadowing component were determined. The simulation results indicate thatpath loss is a linear function of distance, path loss exponent is a function of room size and coating material, and shadowing follows a log-normal distribution.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • 1. F. Miramirkhani, and M. Uysal, “Channel modelling for indoor visible light communications”, Philos. T. R. Soc. A, Special Issue on The Cross-Disciplinary Challenges towards Mobile Optical Wireless Networks, vol. 378, no. 2169, pp. 1-35, Mar. 2020. [Crossref]
  • 2. M. Uysal, F. Miramirkhani, O. Narmanlioglu, T. Baykas, and E. Panayirci, “IEEE 802.15.7r1 reference channel models for visible light communications”, IEEE Commun. Mag., vol. 55, no. 1, pp. 212-217, Jan. 2017. [Crossref]
  • 3. M. Uysal, C. Capsoni, Z. Ghassemlooy, A. Boucouvalas, and E. Udvary, “Optical wireless communications: An emerging technology”, Springer, Berlin, Germany, 2016. [Crossref]
  • 4. F. R. Gfeller, and U. Bapst, “Wireless in-house data communication via diffuse infrared radiation”, Proc. IEEE, vol. 67, no. 11, pp. 1474- 1486, Nov. 1979. [Crossref]
  • 5. J. R. Barry, J. M. Kahn, W. J. Krause, E. A. Lee, and D. G. Messerschmitt, “Simulation of multipath impulse response for wireless optical channels”, IEEE J. Sel. Areas Commun., vol. 11, no. 3, pp. 367-379, Apr. 1993. [Crossref]
  • 6. J. B. Carruthers, and P. Kannan, “Iterative site-based modeling for wireless infrared channels”, IEEE Trans. Antennas Propag., vol. 50, no. 5, pp. 759-765, May 2002. [Crossref]
  • 7. J. B. Carruthers, and J. M. Kahn, “Modelling of non-directed wireless infrared channels”, IEEE Trans. Commun., vol. 45, no. 10, pp. 1260-1268, Oct. 1997. [Crossref]
  • 8. R. Perez-Jimenez, J. Berges, and M. J. Betancor, “Statistical model for the impulse response on infrared indoor diffuse channels”, IEEE Electron. Lett., vol. 33, no. 15, pp. 1298-1300, Jul. 1997. [Crossref]
  • 9. R. Perez-Jimenez, V. M. Melian, and M. J. Betancor, “Analysis of multipath impulse response of diffuse and quasi-diffuse optical links for IR-WLAN”, in Proceedings of the Fourteenth Annual Joint Conference of the IEEE Computer and Communications Societies, Boston, MA, 1995, pp. 924-930.
  • 10. F. J. Lopez-Hernandez, R. Perez-Jimeniz, and A. Santamaria, “Monte Carlo calculation of impulse response on diffuse IR wireless indoor channels”, IEEE Electron. Lett., vol. 34, no. 12, pp. 1260-1262, Jun. 1998. [Crossref]
  • 11. F. J. Lopez-Hernandez, R. Perez-Jimenez, and A. Santamaria, “Modified Monte Carlo scheme for high-efficiency simulation of the impulse response on diffuse IR wireless indoor channels”, IEEE Electron. Lett., vol. 34, no. 19, pp. 1819-1820, Sept. 1998. [Crossref]
  • 12. F. J. Lopez-Hernandez, R. Perez-Jimenez, and A. Santamaria, “Ray tracing algorithms for fast calculation of the channel impulse response on diffuse IR wireless indoor channels”, Opt. Eng., vol. 39, no. 10, pp. 2775-2780, Oct. 2000. [Crossref]
  • 13. M. I. Sakib Chowdhury, W. Zhang, and M. Kavehrad, “Combined deterministic and modified Monte Carlo method for calculating impulse responses of indoor optical wireless channels”, J. Lightwave Technol., vol. 32, no. 18, pp. 3132-3148, Sept. 2014. [Crossref]
  • 14. A. G. Al-Ghamdi, and J. M. Elmirghani, “Performance comparison of LSMS and conventional diffuse and hybrid optical wireless techniques in a real indoor environment”, IEE Proc. Optoelectron., vol. 152, no. 4, pp. 230-238, Aug. 2005. [Crossref]
  • 15. S. Dimitrov, R. Mesleh, H. Haas, M. Cappitelli, M. Olbert, and E. Bassow, “Path loss simulation of an infrared optical wireless system for aircrafts”, in IEEE Global Telecommunications Conference, Honolulu, HI, 2009, pp. 1-6. [Crossref]
  • 16. S. Dimitrov, R. Mesleh, H. Haas, M. Cappitelli, M. Olbert, and E. Bassow, “On the SIR of a cellular infrared optical wireless system for an aircraft”, IEEE J. Sel. Areas Commun., vol. 27, no. 9, pp. 1623-1638, Dec. 2009. [Crossref]
  • 17. F. Miramirkhani, and M. Uysal, “Channel modeling and characterization for visible light communications”, IEEE Photon. J., vol. 7, no. 6, pp. 1-16, Nov. 2015. [Crossref]
  • 18. P. H. Pathak, X. Feng, P. Hu, and P. Mohapatra, “Visible light communication, networking, and sensing: A survey, potential and challenges”, IEEE Commun. Surv. Tutorials, vol. 17, no. 4, pp. 2047- 2077, Sept. 2015. [Crossref]
  • 19. B. Hussain, X. Li, F. Che, C. P. Yue, and L. Wu, “Visible light communication system design and link budget analysis”, J. Lightwave Technol., vol. 33, no. 24, pp. 5201-5209, Nov. 2015. [Crossref]
  • 20. T. Komine, S. Haruyama, and M. Nakagawa, “A study of shadowing on indoor visible-light wireless communication utilizing plural white LED lightings”, Wireless Pers. Commun., vol. 34, no. 1-2, pp. 211-225, Jul. 2005. [Crossref]
  • 21. Y. Xiang, M. Zhang, M. Kavehrad, M. S. Chowdhury, M. Liu, J. Wu, and X. Tang, “Human shadowing effect on indoor visible light communications channel characteristics”, Opt. Eng., vol. 53, no. 8, pp. 086113-086113, Aug. 2014. [Crossref]
  • 22. P. Chvojka, S. Zvanovec, P. A. Haigh, and Z. Ghassemlooy, “Channel characteristics of visible light communications within dynamic indoor environment”, J. Lightwave Technol., vol. 33, no. 9, pp. 1719- 1725, Feb. 2015. [Crossref]
  • 23. A. T. Hussein, and J. M. Elmirghani, “Performance evaluation of multi-gigabit indoor visible light communication system”, in 20th IEEE European Conference on Networks and Optical Communications, London, 2015, pp. 1-6. [Crossref]
  • 24. P. F. Mmbaga, J. Thompson, and H. Haas, “Performance analysis of indoor diffuse VLC MIMO channels using angular diversity detectors,” J. Lightwave Technol., vol. 34, no. 4, pp. 1254-1266, Nov. 2016. [Crossref]
  • 25. V. Pohl, V. Jungnickel, and C. von Helmolt, “A channel model for wireless infrared communication”, in 11th IEEE International Symposium on Personal Indoor and Mobile Radio Communications, London, 2000, pp. 297-303.
  • 26. Lighting of indoor workplaces, Standard ISO 8995:2002 CIE S 008/ E-2001, 2001.
APA MİRAMİRKHANİ F (2021). A Path Loss Model for Link Budget Analysis of Indoor Visible Light Communications. , 242 - 249. 10.5152/electrica.2021.20072
Chicago MİRAMİRKHANİ Farshad A Path Loss Model for Link Budget Analysis of Indoor Visible Light Communications. (2021): 242 - 249. 10.5152/electrica.2021.20072
MLA MİRAMİRKHANİ Farshad A Path Loss Model for Link Budget Analysis of Indoor Visible Light Communications. , 2021, ss.242 - 249. 10.5152/electrica.2021.20072
AMA MİRAMİRKHANİ F A Path Loss Model for Link Budget Analysis of Indoor Visible Light Communications. . 2021; 242 - 249. 10.5152/electrica.2021.20072
Vancouver MİRAMİRKHANİ F A Path Loss Model for Link Budget Analysis of Indoor Visible Light Communications. . 2021; 242 - 249. 10.5152/electrica.2021.20072
IEEE MİRAMİRKHANİ F "A Path Loss Model for Link Budget Analysis of Indoor Visible Light Communications." , ss.242 - 249, 2021. 10.5152/electrica.2021.20072
ISNAD MİRAMİRKHANİ, Farshad. "A Path Loss Model for Link Budget Analysis of Indoor Visible Light Communications". (2021), 242-249. https://doi.org/10.5152/electrica.2021.20072
APA MİRAMİRKHANİ F (2021). A Path Loss Model for Link Budget Analysis of Indoor Visible Light Communications. Electrica, 21(2), 242 - 249. 10.5152/electrica.2021.20072
Chicago MİRAMİRKHANİ Farshad A Path Loss Model for Link Budget Analysis of Indoor Visible Light Communications. Electrica 21, no.2 (2021): 242 - 249. 10.5152/electrica.2021.20072
MLA MİRAMİRKHANİ Farshad A Path Loss Model for Link Budget Analysis of Indoor Visible Light Communications. Electrica, vol.21, no.2, 2021, ss.242 - 249. 10.5152/electrica.2021.20072
AMA MİRAMİRKHANİ F A Path Loss Model for Link Budget Analysis of Indoor Visible Light Communications. Electrica. 2021; 21(2): 242 - 249. 10.5152/electrica.2021.20072
Vancouver MİRAMİRKHANİ F A Path Loss Model for Link Budget Analysis of Indoor Visible Light Communications. Electrica. 2021; 21(2): 242 - 249. 10.5152/electrica.2021.20072
IEEE MİRAMİRKHANİ F "A Path Loss Model for Link Budget Analysis of Indoor Visible Light Communications." Electrica, 21, ss.242 - 249, 2021. 10.5152/electrica.2021.20072
ISNAD MİRAMİRKHANİ, Farshad. "A Path Loss Model for Link Budget Analysis of Indoor Visible Light Communications". Electrica 21/2 (2021), 242-249. https://doi.org/10.5152/electrica.2021.20072