Yıl: 2020 Cilt: 13 Sayı: 1 Sayfa Aralığı: 162 - 170 Metin Dili: İngilizce DOI: 10.18185/erzifbed.638547 İndeks Tarihi: 14-12-2021

Preparation and Characterization of Calcite Loaded Poly (Lactic Acid) Composite Materials

Öz:
In this work, calcite (KS) mineral was compounded with poly (lactic acid) (PLA) at the concentrations of 5, 10, 15 and 20 wt% using extrusion process. Test samples of PLA and composites were prepared by injection molding. Characterization of composites were done based on mechanical tests including tensile, hardness and impact tests, flow behavior by melt flow rate test (MFR) and morphological studies by scanning electron microscopy (SEM) method. Mechanical test results showed that the highest improvements in tensile strength and tensile modulus values were obtained for 10 wt% of KS filled composite. Further addition of KS caused remarkable decrease in tensile strength. Impact strength of PLA reduced by KS additions. The highest impact energy value was found in PLA-15 KS sample among composites. Hardness of neat PLA increased after KS inclusions. KS loaded PLA gave slightly higher MFR values compared to neat PLA. SEM micro-images of composites implied that KS particles dispersed homogeneously in PLA matrix at their lower loading ratio. Large agglomerates and poor dispersion were obtained for higher concentrations of KS since they favor particleparticle interactions. According to these results, concentrations of 10wt% and 15wt% were determined as suitable for calcite containing PLA composites.
Anahtar Kelime:

Kalsit Takviyeli Poli (Laktik Asit) Kompozit Malzemelerinin Hazırlanması ve Karakterizasyonu

Öz:
Bu çalışmada, kalsit (KS) minerali ağırlıkça %5, 10, 15 ve 20 konsantrasyonlarında poli (laktik asit) (PLA) ile ekstrüzyon işlemi kullanılarak karıştırılmıştır. PLA ve kompozitlerin test numuneleri enjeksiyon kalıplama ile hazırlanmıştır. Kompozitlerin karakterizasyonları, çekme, sertlik ve darbe testlerini içeren mekanik testler, erime akış hızı testi (MFR) ile akış davranışı ve taramalı elektron mikroskopi (SEM) yöntemi ile morfolojik çalışmalar baz alınarak yapılmıştır. Mekanik test sonuçları, çekme dayanım ve modülde en yüksek artışa %10 KS eklenmiş kompozitte saptandığını göstermiştir. Daha fazla KS eklenmesi çekme dayanımında belirgin düşüşe neden olmuştur. PLA’nın darbe dayanımı KS eklenmesi ile azalmıştır. Kompozitler arasında en yüksek darbe enerjisi PLA-15 KS numunesinde bulunmuştur. Eklentisiz PLA’nın sertliği KS eklemelerinden sonra artmıştır. Eklentisiz PLA’ya kıyasla, KS takviyeli PLA biraz yüksek MFR değerleri vermiştir. Kompozitlerin SEM mikro-resimleri göstermiştir ki; KS parçacıkları düşük ekleme oranlarında PLA matrisi içinde homojen şekilde dağılmıştır. KS yüksek konsantrasyonlarda parçacık-parçacık etkileşimlerini tercih ettiğinden büyük aglomeratlar ve zayıf dağılım gözlenmiştir. Bu sonuçlara göre, %10 ve %15 konsantrasyonları kalsit içeren PLA kompozitleri için uygun olarak belirlenmiştir.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • Alghadi, A.M., Tirkes, S. and Tayfun, U. 2020. “Mechanical, thermo-mechanical and morphological characterization of ABS based composites loaded with perlite mineral”, Material Research Express, 7(1), 015301. DOI: 10.1088/2053-1591/ab551b
  • Ayaz, M., Ghasemi, F.A., Rahimloo, V.P. and Menbari, S. 2018. “Multi-response optimization of the mechanical properties of PP/talc/CaCO3 ternary nanocomposites by the response surface methodology combined with desirability function approach”, Journal of Elastomers & Plastics, DOI: 10.1177/0095244318819184
  • Bajpai, P.K., Singh,I. and Madaan, J. 2012. “Development and characterization of PLAbased green composites: A review”, Journal of Thermoplastic Composite Materials, 27, 52-81. DOI: 10.1177/0892705712439571
  • Betingytė, V., Žukienė, K., Jankauskaitė, V., Milašienė, D., Mickus, K.V. and Gulbinienė, A., 2012. “Influence of calcium carbonate fillers on the properties of recycled poly (ecaprolactone) based thermoplastic polyurethane”, Materials Science, 18(3), 243- 249. DOI: 10.5755/j01.ms.18.3.2433
  • Bismarck, A., Baltazar, A., Jimenez, Y. and Sarikakis, K. 2006. “Green composites as panacea? Socio-economic aspects of green materials”, Environment, Development and Sustainability, 8(3), 445-463. DOI: 10.1007/s10668-005-8506-5
  • Brown, T. (1999) “Handbook of Polymer Testing-Physical Methods”, Rapra Technology, Shawbury.
  • Cacciotti, I., Mori, S., Cherubini, V. and Nanni, F. 2018. “Eco-sustainable systems based on poly(lactic acid), diatomite and coffee grounds extract for food packaging”, International Journal of Biological Macromolecules, 112, 567-575. DOI: 10.1016/j.ijbiomac.2018.02.018
  • Cho, S.B., Kikuchi, M., Suetsugu, Y. and Tanaka, J. 1997. “Novel calcium phosphate/polylactide composites-its in vitro evaluation”, Key Engineering Materials, 132- 136, 802-805. DOI: 10.4028/www.scientific.net/KEM.132- 136.802
  • Demjen, Z., Pukanszky, B. and Nagy, J. 1998. “Evaluation of interfacial interaction in polypropylene surface treated CaCO3 composites”, Composites Part A: Applied Science and Manufacturing, 29, 323–329. DOI: 10.1016/S1359-835X(97)00032-8
  • Dike, A.S., Tayfun, U. and Dogan, M. 2017. “Influence of zinc borate on flame retardant and thermal properties of polyurethane elastomer composites containing huntite&hydromagnesite mineral”, Fire and Materials, 41(7), 890-897. DOI: 10.1002/fam.2428
  • Dike, A.S. and Yilmazer U. 2019. “Improvement of organoclay dispersion into polystyrenebased nanocomposites by incorporation of SBS and maleic anhydridegrafted SBS”, Journal of Thermoplastic Composite Materials, DOI: 10.1177/0892705719882998
  • Dogan, M. and Bayramli, E. 2009. “Effect of polymer additives and process temperature on the physical properties of bitumen-based composites”, Journal of Applied Polymer Science, 113(4), 2331-2338. DOI: 10.1002/app.30280
  • Doppalapudi, S., Jain, A., Khan, W. and Domb, A.J., 2014. “Biodegradable polymersan overview”, Polymers for Advanced Technologies, 25(5), 427-435. DOI: 10.1002/pat.3305
  • Eselini, N., Tirkes, S., Akar, A.O. and Tayfun, U. 2019. “Production and characterization of poly (lactic acid)-based biocomposites filled with basalt fiber and flax fiber hybrid”, Journal of Elastomers & Plastics, DOI: 10.1177/0095244319884716
  • Farah, S., Anderson, D.G. and Langer, R., 2016. “Physical and mechanical properties of PLA, and their functions in widespread applications-A comprehensive review”, Advanced Drug Delivery Reviews, 107, 367- 392. DOI: 10.1016/j.addr.2016.06.012
  • Fuad, M.Y.A., Hanim, H., Zarina. R., Ishak, Z.H.M. and Hassan, A. 2010. “Polypropylene/calcium carbonate nanocomposites effects of processing techniques and maleated polypropylene compatibiliser”, Express Polymer Letters, 4, 611–620. DOI: 10.3144/expresspolymlett.2010.76
  • Gahleitner, M., Grein, C. and Bernreitner, K. 2012. “Synergistic mechanical effects of calcite micro- and nanoparticles and βnucleation in polypropylene copolymers”, European Polymer Journal, 48(1), 49-59. DOI: 10.1016/j.eurpolymj.2011.10.013
  • Ge, C., Ding, P., Shi, L. and Fu, J. 2009. “Isothermal crystallization kinetics and melting behavior of poly (ethylene terephthalate)/barite nanocomposites”, Journal of Polymer Science B Polymer Physics, 47, 655-668. DOI:10.1002/polb.21669
  • Gorna, K., Hund, M., Vucak, M., Grohn, F. and Wegner, G. 2008. “Amorphous calcium carbonate in form of spherical nanosized particles and its application as fillers for polymers”, Materials Science and Engineering: A, 477, 217-225. DOI: 10.1016/j.msea.2007.05.045
  • Hatipoglu, A. and Dike, A.S. 2020. “Effects of concentration and surface silanization of barite on the mechanical and physical properties of poly (lactic acid)/barite composites”, Polymers and Polymer Composites, 28(2), 140-148. DOI: 10.1177/0967391119883083
  • Hottle, T.A., Bilec, M.M. and Landis, A.E., 2013. “Sustainability assessments of biobased polymers”, Polymer Degradation and Stability, 98(9), 1898-1907. DOI: 10.1016/j.polymdegradstab.2013.06.016
  • Isitman, N.A., Dogan, M., Bayramli, E. and Kaynak, C. 2011. “Fire retardant properties of intumescent polypropylene composites filled with calcium carbonate”, Polymer Engineering and Science, 51(5), 875-883. DOI: 10.1002/pen.21901
  • Jerzy, W. (1993) “Fillers’’, Chem Tech Publishing, Toronto. Jiang, L., Zhang, J. and Wolcott, M.P. 2007. “Comparison of polylactide/nano-sized calcium carbonate and polylactide/montmorillonite composites: reinforcing effects and toughening mechanisms”, Polymer, 48, 7632-7644. DOI: 10.1016/j.polymer.2007.11.001
  • Jikan, S.S., Samsudin, M.S.F., Ariff, Z.M., Ishak, Z.A.M. and Ariffin, A. 2009. “Relationship of rheological study with morphological characteristics of multicomponent (talc and calcium carbonate) filled polypropylene hybrid composites”, Journal of Reinforced Plastics and Composites, 28(21), 2577-2587. DOI: 10.1177/0731684408092440
  • Kanbur, Y. and Tayfun, U. 2017. “Mechanical, physical and morphological properties of polypropylene/huntite composites”, Sakarya University Journal of Science, 21(5), 1045-1050. DOI: 10.16984/saufenbilder.281035
  • Kanbur, Y. and Tayfun, U. 2018. “Mechanical, physical and morphological properties of acidic and basic pumice containing polypropylene composites”, Sakarya University Journal of Science, 22(2), 333-339. DOI: 10.16984/saufenbilder.287861
  • Kasuga, T., Maeda, H., Kato, K., Nogami, M., Hata, K.I. and Ueda, M. 2003. “Preparation of poly (lactic acid) composites containing calcium carbonate (vaterite)”, Biomaterials, 24(19), 3247-3253. DOI: 10.1016/S0142- 9612(03)00190-X
  • Kiehl, J., Huser, J., Bistac, S., & Delaite, C. (2012). “Influence of fillers content on the viscosity of unsaturated polyester resin/calcium carbonate blends”, Journal of Composite Materials, 46(16), 1937–1942. DOI: 10.1177/0021998311427780
  • Lezak, E., Kulinski, Z. Masirek, R. Piorkowska, E. Pracella, M. and Gadzinowska, K. 2008. “Mechanical and thermal properties of green polylactide composites with natural fillers”, Macromolecular Bioscience, 8, 1190-1200. DOI: 10.1002/mabi.200800040
  • Liang J.Z. 2013. “Reinforcement and quantitative description of inorganic particulate-filled polymer composites”, Composites Part B: Engineering, 51, 224- 232. DOI: 10.1016/j.compositesb.2013.03.019
  • Maeda, H. Kasuga, T., Nogami, M., Hibino, Y., Hata, K., Ueda, M. and Ota, Y. 2002. “Biomimetic apatite formation on poly (lactic acid) composites containing calcium carbonates”, Journal of Materials Reseach, 17, 727-730. DOI: 10.1557/JMR.2002.0104
  • Maeda, H. Kasuga, T. Nogami, M. Hibino, Y. Hata, K. Ueda, M. and Ota Y. 2002. “Preparation of bioactive polylactic acid composites containing calcium carbonates”, Key Engineering Materials, 240-242, 163- 166. DOI: 10.4028/www.scientific.net/KEM.240- 242.163
  • Mann, G.S., Singh, L.P., Kumar, P. and Singh, S. 2018. “Green composites: A review of processing technologies and recent applications”, Journal of Thermoplastic Composite Materials, DOI: 10.1177/0892705718816354
  • Mat, N.S.C., Ismail, H. and Othman, N. 2017. “Curing characteristics and mechanical and aging properties of ethylene propylene diene monomer/calcium carbonate/bentonite hybrid composites”, Journal of Elastomers & Plastics, 49(5), 397–407. DOI: 10.1177/0095244316663812
  • Metin, D., Tihminhoglu, F., Balkose, D. and Ulku, S. 2004. “The effect of interfacial interactions on the mechanical properties of polypropylene/natural zeolite composites”, Composites Part A: Applied Science and Manufacturing, 35(1), 23-32. DOI: 10.1016/j.compositesa.2003.09.021
  • Murariu, M. and Dubois, P. 2016. “PLA composites: From production to properties”, Advanced Drug Delivery Reviews, 107, 17-46. DOI: 10.1016/j.addr.2016.04.003
  • Ozen, I. and Simsek, S. 2016. “Effect of stretching temperature on breathability and waterproofness properties of polyethylene films containing different calcium carbonates”, Journal of Plastic Film & Sheeting, 32(4), 380–401. DOI: 10.1177/8756087915597025
  • Piekarska, K., Sowinski, P., Piorkowska, E., Haque, M.M.U. and Pracella, M. 2016. “Structure and properties of hybrid PLA nanocomposites with inorganic nanofillers and cellulose fibers”, Composites Part A: Applied Science and Manufacturing, 82, 34- 41. DOI: 10.1016/j.compositesa.2015.11.019
  • Piekarska, K., Piorkowska, E. and Bojda, J., 2017. “The influence of matrix crystallinity, filler grain size and modification on properties of PLA/calcium carbonate composites”, Polymer Testing, 62, 203-209. DOI: 10.1016/j.polymertesting.2017.06.025
  • Piorkowska, E. (2019). “Overview of Biobased Polymers”, In: “Advances in Polymer Science”, Springer, Berlin, Heidelberg. DOI: 10.1007/12_2019_52
  • Rasal, R.M., Janorkar, A.V. and Hirt, D.E. 2010. “Poly (lactic acid) modifications”, Progress in Polymer Science, 35, 338-356. DOI: 10.1016/j.progpolymsci.2009.12.003
  • Ren, J. (2011). “Biodegradable poly (lactic acid): Synthesis, modification, processing and applications”, Springer, Verlag.
  • Rothon, R.N. (2003). “Particulate-filled polymer composites”, 2nd Edition, Rapra Technology Limited, UK.
  • Tayfun, U. 2006 “Effects of fillers on morphological, mechanical, flow and thermal properties of bituminous composites”, MSc Thesis, Middle East Technical University Graduate School of Natural and Applied Sciences, Ankara, 54.
  • Tayfun, U. and Dogan, M. 2016. “Improvement the dyeability of poly (lactic acid) fiber using organoclay during melt spinning”, Polymer Bulletin, 73(6), 1581- 1593. DOI: 10.1007/s00289-015-1564-4
  • Tayfun, U., Dogan, M. and Bayramli, E. 2017. “Polyurethane elastomer as a matrix material for short carbon fiber reinforced thermoplastics”, Anadolu University Journal of Science and Technology A - Applied Sciences and Engineering, 18(3), 682-694. DOI: 10.18038/aubtda.271011
  • Theberge, J.E. 1982. “Mineral reinforced thermoplastic composites”, Journal of Elastomers & Plastics, 14(2), 100-108. DOI: 10.1177/009524438201400202
  • Thio, Y.S., Argon, A.S. and Cohen, R.E. 2002. “Toughening of isotactic polypropylene with CaCO3 particles”, Polymer, 43: 3661- 3674. DOI: 10.1016/S0032-3861(02)00193-3
  • Tian, H.Y. and Tagaya, H. 2007. “Preparation, characterization and mechanical properties of the polylactide/perlite and the polylactide/montmorillonite composites”, Journal of Material Science, 42, 3244-3250. DOI: 10.1007/s10853-006-0230-5
  • Vishu, S. (1998) “Handbook of Plastic Testing Technology’’, Second Edition, WileyInterscience Publication, Germany. Wake, W.C. (1971) “Fillers for Plastics’’, Iliffe for the Plastics Institute, London.
  • Weber, C.J., Haugaard, V., Festersen, R. and Bertelsen, G. 2002. “Production and applications of biobased packaging materials for the food industry”, Food Additives & Contaminants, 19, 172-177. DOI: 10.1080/02652030110087483
  • Xanthos, M. (2005). “Functional fillers for plastics”, Wiley VCH, Weinheim.
  • Yang, K., Yang, Q., Li, G., Sun, Y. and Feng, D., 2006. “Morphology and mechanical properties of polypropylene/calcium carbonate nanocomposites”, Materials Letters, 60(6), 805-809. DOI: 10.1002/app.10789
  • Yıldızhan, Ş., Çalık, A., Özcanlı, M. and Serin, H. 2018. “Bio-composite materials: a short review of recent trends, mechanical and chemical properties, and applications”, European Mechanical Science, 2(3), 83-91. DOI: 10.26701/ems.369005
  • Zhitong, Y., Meisheng, X., Liugin, G., Tao, C., Haiyan, L. and Ying, Y. 2014. “Mechanical and thermal properties of polypropylene (PP) composites filled with CaCO3 and shell-waste derived bio-fillers”, Fibers and Polymers, 15, 1278-1287. DOI: 10.1007/s12221-014-1278-5
  • Zuiderduin, W.C.J., Westzaan, C., Huetink J. and Gaymans, R.J. 2003. “Toughening of polypropylene with calcium carbonate particles”, Polymer, 44, 261–275. DOI: 10.1016/S0032-3861(02)00769-3
APA DIKE A (2020). Preparation and Characterization of Calcite Loaded Poly (Lactic Acid) Composite Materials. , 162 - 170. 10.18185/erzifbed.638547
Chicago DIKE ALI SINAN Preparation and Characterization of Calcite Loaded Poly (Lactic Acid) Composite Materials. (2020): 162 - 170. 10.18185/erzifbed.638547
MLA DIKE ALI SINAN Preparation and Characterization of Calcite Loaded Poly (Lactic Acid) Composite Materials. , 2020, ss.162 - 170. 10.18185/erzifbed.638547
AMA DIKE A Preparation and Characterization of Calcite Loaded Poly (Lactic Acid) Composite Materials. . 2020; 162 - 170. 10.18185/erzifbed.638547
Vancouver DIKE A Preparation and Characterization of Calcite Loaded Poly (Lactic Acid) Composite Materials. . 2020; 162 - 170. 10.18185/erzifbed.638547
IEEE DIKE A "Preparation and Characterization of Calcite Loaded Poly (Lactic Acid) Composite Materials." , ss.162 - 170, 2020. 10.18185/erzifbed.638547
ISNAD DIKE, ALI SINAN. "Preparation and Characterization of Calcite Loaded Poly (Lactic Acid) Composite Materials". (2020), 162-170. https://doi.org/10.18185/erzifbed.638547
APA DIKE A (2020). Preparation and Characterization of Calcite Loaded Poly (Lactic Acid) Composite Materials. Erzincan Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 13(1), 162 - 170. 10.18185/erzifbed.638547
Chicago DIKE ALI SINAN Preparation and Characterization of Calcite Loaded Poly (Lactic Acid) Composite Materials. Erzincan Üniversitesi Fen Bilimleri Enstitüsü Dergisi 13, no.1 (2020): 162 - 170. 10.18185/erzifbed.638547
MLA DIKE ALI SINAN Preparation and Characterization of Calcite Loaded Poly (Lactic Acid) Composite Materials. Erzincan Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol.13, no.1, 2020, ss.162 - 170. 10.18185/erzifbed.638547
AMA DIKE A Preparation and Characterization of Calcite Loaded Poly (Lactic Acid) Composite Materials. Erzincan Üniversitesi Fen Bilimleri Enstitüsü Dergisi. 2020; 13(1): 162 - 170. 10.18185/erzifbed.638547
Vancouver DIKE A Preparation and Characterization of Calcite Loaded Poly (Lactic Acid) Composite Materials. Erzincan Üniversitesi Fen Bilimleri Enstitüsü Dergisi. 2020; 13(1): 162 - 170. 10.18185/erzifbed.638547
IEEE DIKE A "Preparation and Characterization of Calcite Loaded Poly (Lactic Acid) Composite Materials." Erzincan Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 13, ss.162 - 170, 2020. 10.18185/erzifbed.638547
ISNAD DIKE, ALI SINAN. "Preparation and Characterization of Calcite Loaded Poly (Lactic Acid) Composite Materials". Erzincan Üniversitesi Fen Bilimleri Enstitüsü Dergisi 13/1 (2020), 162-170. https://doi.org/10.18185/erzifbed.638547