Yıl: 2021 Cilt: 8 Sayı: 4 Sayfa Aralığı: 1025 - 1034 Metin Dili: İngilizce DOI: 10.18596/jotcsa.832628 İndeks Tarihi: 29-07-2022

Anticancer Activities of a Metal-Free Phthalocyanine on MCF-7 and MDAMB-231 Cells and Singlet Oxygen Production as a Photosensitizer in PDT

Öz:
Cancer, which is often described as an uncontrollable rapid proliferation of cells, is currently theleading cause of death in the world together with cardiac disease. Therefore, the main purpose of thecurrent research work was to study the anticancer effects of a first-time-synthesized phthalocyanine (Pc)as photosensitizer in PDT against cancer and evaluate its effects on human cells in vitro. Quantum yields ofsinglet oxygen photogeneration were in air using the relative method with standard-ZnPc as reference andDPBF as chemical quencher for singlet oxygen. The concentration of DPBF was prepared almost 3 x 10-5molar to avoid chain reactions induced by DPBF in the presence of singlet oxygen. Solutions of Pc assensitizer (absorbance = 2.0 at the irradiation wavelength) containing DPBF were prepared in the dark andirradiated in the Q band region using the setup described. DPBF degradation at 417 nm was monitoredwith UV-Vis spectrophotometry. For in vitro studies, nine different MFPc-1 concentrations (0.2 µM- 0.4 µM0.8 µM- 1.6 µM- 3.2 µM- 6.4 µM- 12.8 µM- 25.6 µM- 51.2 µM) applied to MCF-7 and MDA-MB-231 breastcancer cell lines for 24 hours and MTT assay was carried out. After determination of optimumconcentration, mitotic index, and apoptotic index values of cell lines were determined with administrationof these concentrations. Singlet oxygen quantum yield (Φ), which is a measure of the efficiency, of MFPc1 was found 0.50, although MFPc-1 is being metal-free phthalocyanine. For in vitro studies after theapplication of different concentrations to MCF-7 and MDA-MB-231 for 24 hours, the optimum concentrationwas determined as 12 µM for both cell lines by the MTT assay. After application of the determined optimumconcentration for 24, 48 and 72 hours, there was a significant decrease in the mitotic index values andsignificant increase in the apoptotic index values of both MCF-7 and MDA-MB-231 breast cancer cell lines.
Anahtar Kelime: cell kinetic Metal-free phthalocyanine breast cancer singlet oxygen in vitro

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • 1. L'her M, Pondaven A, in The Porphyrin Handbook, ed. Kadish KM, Smith KM, Guilard R, Academic Press, Amsterdam, 2003; 117-169.
  • 2. van Staden JF, Application of Phthalocyanines in Flow- and Sequential-Injection Analysis and Microfluidics Systems: A review. Talanta 2015; 139: 75-88.
  • 3. Kumar KVA, Raghavendra S, Rao SV, Hamad S, Dharmaprakash SM, Structural, linear and nonlinear optical study of zinc tetra-tert-butyl phthalocyanine thin film, Optik 2015; 126: 5918-5922.
  • 4. Morishige K, Tomoyasu S, Iwani G. Adsorption of CO, O2, NO2, and NH3 by Metallophthalocyanine Monolayers Supported on Graphite, Langmuir 1997; 13: 5184-5184.
  • 5. David DO, Nyokong T, Prinsloo E. Photophysicochemical properties of nanoconjugates of zinc(II) 2(3)-mono-2-(4-oxy)phenoxy)acetic acid phthalocyanine with cysteamine capped silver and silver–gold nanoparticles, Polyhedron 2016; 119: 434–444.
  • 6. Sheng N, Yuan Z, Wang J, Chen W. Sun J, Bian Y. Third-order nonlinear optical properties of sandwich-type mixed (phthalocyaninato)(porphyrinato) europium double- and triple-decker complexes, Dyes Pigm. 2012; 95: 627-631.
  • 7. Allen CM, Sharman WM, van Lier JE. Current status of phthalocyanines in the photodynamic therapy of cancer, J. Porphy. Phthalocy. 2001; 5: 161-169.
  • 8. Detty MR, Gibson SI, Wagner SJ. Current clinical and preclinical photosensitizers for use in photodynamic therapy, J. Med Chem. 2004; 47: 3897-3915.
  • 9. Dougherty TJ, Mang TS. Characterization of intra-tumoral porphyrin following injection of hematoporphyrin derivative or its purified component. Photochem. Photobiol. 1987; 46: 67-70.
  • 10. Canti G, Lattuada D, Morelli S, Nicolin A, Cubeddu R, Taroni P, Valentini G. Efficacy of photodynamic therapy against doxorubicin-resistant murine tumors. Cancer Lett. 1995; 93: 255-259.
  • 11. Lofgren LA, Hallgren S, Nilsson E, Westerborn A, Nilsson C, Reizenstein J. Photodynamic therapy for recurrent nasopharyngeal cancer. Arch. Otolaryngol. Head Neck Surg. 1995; 121: 997-1002.
  • 12. Furuyama T, Miyaji Y, Maeda K, Maeda H, Segi M. Extremely Photostable Electron‐Deficient Phthalocyanines that Generate High Levels of Singlet Oxygen, Chem. Eur. J. 2019; 25(7): 1678-1682.
  • 13. Dougherty TJ. Photosensitizers: therapy and detection of malignant tumors. Photochem. Photobiol. 1987; 45: 879-889.
  • 14. Dougherty TJ, Grindey GB, Fiel R, Weishaupt K, Boyle DG. Photoradiation therapy. II. Cure of animal tumors with hematoporphyrin and light. J. Natl. Can. Inst. 1975; 55: 115-119.
  • 15. Macdonald IJ, Dougherty TJ. Basic principles of photodynamic therapy J. Porphyrins Phthalocyanines 2001; 5: 105-129.
  • 16. Braun A, Tcherniac T. Uber die Producte der Einwirkung von Acetanhydrid auf Phatalamid, Ber. Deutsch. Chem. Ges. 1907; 40: 2709.
  • 17. Stuchinskaya T, Moreno M, Cook MJ, Edwards DR, Russell DA. Targeted photodynamic therapy of breast cancer cells using antibody-phthalocyanine-gold nanoparticle conjugates. Photochem. Photobiol. Sci. 2011; 10: 822-831.
  • 18. Cetin I, Topcul MR. In vitro antiproliferative effects of nab-paclitaxel with liposomal cisplatin on MDA-MB-231 and MCF-7 breast cancer cell lines. JBUON 2017; 22: 347-354.
  • 19. Fery-Forgues S, Lavabre D. Are fluorescence quantum yields so tricky to measure? A demonstration using familiar stationery products. J. Chem. Ed., 1999; 76: 1260-1264.
  • 20. Fu J, Li X-Y, Dennis K, Ng P, Wu C. Encapsulation of Phthalocyanines in Biodegradable Poly(sebacic anhydride) NanoparticlesLangmuir 2002; 18: 3843-3847.
  • 21. Ogunsipe A, Maree D, Nyokong T. Solvent effects on the photochemical and fluorescence properties of zinc phthalocyanine derivatives. J. Mol Struct., 2003; 650: 131-140.
  • 22.Tau P, Ogunsipe A, Maree S, Maree MD, Nyokong T. Influence of cyclodextrins on the fluorescence, photostability and singlet oxygen quantum yields of zinc phthalocyanine and naphthalocyanine complexes. J. Porphyr. Phtalocyan., 2003; 7: 439-446.
  • 23. Seotsanyana-Mokhosi I, Kutnetsova N, Nyokong T. J. Photochem. Photobiol. A Chem. 2001; 140: 215-222.
  • 24.Ogunsipe A, Chen JY, Nyokong T. Photophysical and photochemical studies of zinc (II) phthalocyanine derivatives—effects of substituents and solvents. New J Chem. 2004; 28: 822-827.
  • 25. Hsiao SH, Yang CP, Chu KY. Synthesis and Properties of Poly(ether imide)s Having Ortho-Linked Aromatic Units in the Main Chain. Macromolecules, 1997; 30: 165-170.
  • 26. Cetin I, Topcul MR. Triple Negative Breast Cancer. Asian Pac J Cancer Prev. 2014; 15: 2427-2431.
  • 27. Topcul M, Çetin I, Ozbaş Turan S, Kolusayın Ozar MO. In vitro cytotoxic effect of PARP inhibitor alone and in combination with nab-paclitaxel on triple-negative and luminal A breast cancer cells. Oncology Reports. 2018; 40: 527-535.
  • 28. Kuznetsova NA, Gretsova NS, Kalmykova EA, Makarova EA, Dashkevich SN, Negrimovskii VM, Kaliya OL, Lukʼyanets EA. Relationship between the photochemical properties and structure of pophyrins and related compounds. Russ. J. Gen. Chem. 2000; 70: 133-140.
  • 29. Jacques P, Braun AM. Laser flash photolysis of phthalocyanines in solution and microemulsion. Helv. Chim. Acta 1981; 64: 1800-1806.
  • 30. Freyer W, Mueller S, Teuchner K. Photophysical properties of benzoannelated metal-free Phthalocyanines. J. Photochem. Photobiol. A: Chem 2004; 163: 231-240.
  • 31. Bonnett. R. Chemical Aspects of Photodynamic Therapy. Gordon and Breach Science Publishers: Netherlands, 2000; 1.
  • 32. Canlica M. 3, 5-di-tert-butyl substituted phthalocyanines: Synthesis and specific properties. J. Mol. Struct. 2020; 1214: 128160.
  • 33. Manisova B, Binder S, Malina L, Jiravova J, Langova K, Kolarova H. Phthalocyanine-mediated photodynamic treatment of tumoural and non-tumoural cell lines. Anticancer Research. 2015; 35: 3943-3951.
  • 34. Mehraban N, Musich PR, Freeman HS. Synthesis and encapsulation of a new zinc phthalocyanine photosensitizer into polymeric nanoparticles to enhance cell uptake and Phototoxicity. Appl Sci. 2019; 9: 401-414.
APA Canlica M, Çetin İ (2021). Anticancer Activities of a Metal-Free Phthalocyanine on MCF-7 and MDAMB-231 Cells and Singlet Oxygen Production as a Photosensitizer in PDT. , 1025 - 1034. 10.18596/jotcsa.832628
Chicago Canlica Mevlude,Çetin İdil Anticancer Activities of a Metal-Free Phthalocyanine on MCF-7 and MDAMB-231 Cells and Singlet Oxygen Production as a Photosensitizer in PDT. (2021): 1025 - 1034. 10.18596/jotcsa.832628
MLA Canlica Mevlude,Çetin İdil Anticancer Activities of a Metal-Free Phthalocyanine on MCF-7 and MDAMB-231 Cells and Singlet Oxygen Production as a Photosensitizer in PDT. , 2021, ss.1025 - 1034. 10.18596/jotcsa.832628
AMA Canlica M,Çetin İ Anticancer Activities of a Metal-Free Phthalocyanine on MCF-7 and MDAMB-231 Cells and Singlet Oxygen Production as a Photosensitizer in PDT. . 2021; 1025 - 1034. 10.18596/jotcsa.832628
Vancouver Canlica M,Çetin İ Anticancer Activities of a Metal-Free Phthalocyanine on MCF-7 and MDAMB-231 Cells and Singlet Oxygen Production as a Photosensitizer in PDT. . 2021; 1025 - 1034. 10.18596/jotcsa.832628
IEEE Canlica M,Çetin İ "Anticancer Activities of a Metal-Free Phthalocyanine on MCF-7 and MDAMB-231 Cells and Singlet Oxygen Production as a Photosensitizer in PDT." , ss.1025 - 1034, 2021. 10.18596/jotcsa.832628
ISNAD Canlica, Mevlude - Çetin, İdil. "Anticancer Activities of a Metal-Free Phthalocyanine on MCF-7 and MDAMB-231 Cells and Singlet Oxygen Production as a Photosensitizer in PDT". (2021), 1025-1034. https://doi.org/10.18596/jotcsa.832628
APA Canlica M, Çetin İ (2021). Anticancer Activities of a Metal-Free Phthalocyanine on MCF-7 and MDAMB-231 Cells and Singlet Oxygen Production as a Photosensitizer in PDT. Journal of the Turkish Chemical Society, Section A: Chemistry, 8(4), 1025 - 1034. 10.18596/jotcsa.832628
Chicago Canlica Mevlude,Çetin İdil Anticancer Activities of a Metal-Free Phthalocyanine on MCF-7 and MDAMB-231 Cells and Singlet Oxygen Production as a Photosensitizer in PDT. Journal of the Turkish Chemical Society, Section A: Chemistry 8, no.4 (2021): 1025 - 1034. 10.18596/jotcsa.832628
MLA Canlica Mevlude,Çetin İdil Anticancer Activities of a Metal-Free Phthalocyanine on MCF-7 and MDAMB-231 Cells and Singlet Oxygen Production as a Photosensitizer in PDT. Journal of the Turkish Chemical Society, Section A: Chemistry, vol.8, no.4, 2021, ss.1025 - 1034. 10.18596/jotcsa.832628
AMA Canlica M,Çetin İ Anticancer Activities of a Metal-Free Phthalocyanine on MCF-7 and MDAMB-231 Cells and Singlet Oxygen Production as a Photosensitizer in PDT. Journal of the Turkish Chemical Society, Section A: Chemistry. 2021; 8(4): 1025 - 1034. 10.18596/jotcsa.832628
Vancouver Canlica M,Çetin İ Anticancer Activities of a Metal-Free Phthalocyanine on MCF-7 and MDAMB-231 Cells and Singlet Oxygen Production as a Photosensitizer in PDT. Journal of the Turkish Chemical Society, Section A: Chemistry. 2021; 8(4): 1025 - 1034. 10.18596/jotcsa.832628
IEEE Canlica M,Çetin İ "Anticancer Activities of a Metal-Free Phthalocyanine on MCF-7 and MDAMB-231 Cells and Singlet Oxygen Production as a Photosensitizer in PDT." Journal of the Turkish Chemical Society, Section A: Chemistry, 8, ss.1025 - 1034, 2021. 10.18596/jotcsa.832628
ISNAD Canlica, Mevlude - Çetin, İdil. "Anticancer Activities of a Metal-Free Phthalocyanine on MCF-7 and MDAMB-231 Cells and Singlet Oxygen Production as a Photosensitizer in PDT". Journal of the Turkish Chemical Society, Section A: Chemistry 8/4 (2021), 1025-1034. https://doi.org/10.18596/jotcsa.832628