Yıl: 2021 Cilt: 6 Sayı: 2 Sayfa Aralığı: 85 - 92 Metin Dili: İngilizce DOI: 10.24880/maeuvfd.936262 İndeks Tarihi: 29-07-2022

Biomechanical tests: applications and their reliability for the prediction of bone strength in broiler chicken

Öz:
The poultry industry is considered potent for the economy of any country because chicken production is an important food source now-a-days. However, skeletal abnormalities are one of the major contributing factors to production loss. For decades researchers are trying to make contributions for the diagnosis of these problems effectively and are giving suggestions for the improvement in their skeletal deficiencies. Bone structural and metabolic disturbances (like tibial dyschondroplasia, osteoporosis and osteoarthrosis) are common in broiler chickens and have emerged in past few years. Due to fast growth and high leg to body weight ratio bone suffers excessive stress and loses the strength. Such conditions are manifested with a tendency for fracture. Understanding of bone quality provides deep information of the mechanical and functional aspects of bone tissues. The measurements of the bone strength can be performed with some methods, like the geometrical indices, radiographic or dual-energy X-ray absorptiometric density measurements, ash content measurements or the assays of bone turnover biomarkers. But biomechanical tests are the core diagnostic tools that can measure bone health parameters with reliable indicators. In this review, an overview of the mechanical tests used to test bone quality has been given and the effectiveness of such methods is discussed using different bones of poultry birds. Knowing the basic concepts on biomechanical tests applied in poultry bones and comparing the results to identify suitable testing methods may input improvement in the dialogue between the researchers interested in the assessment of bone strength at both structural and pathophysiological levels.
Anahtar Kelime: Biomechanical testing bone strength broiler bones

Belge Türü: Makale Makale Türü: Derleme Erişim Türü: Erişime Açık
  • 1. Korver D, Saunders-Blades J, Nadeau K. Assessing bone mineral density in vivo: Quantitative computed tomography. Poult Sci J. 2004; 2(83): 222-29.
  • 2. Konig HE, Korbel R, Liebich H-G, Klupiec C. Avian anatomy: textbook and colour atlas. 3rd ed. 5m Books Ltd; 2016. p. 64-80.
  • 3. Watanabe J. Ontogeny of macroscopic morphology of limb bones in modern aquatic birds and their implications for ontogenetic ageing. Contribuciones del MACN. 2017; 7): 183- 20.
  • 4. Church LE, Johnson LC. Growth of long bones in the chicken. Rates of growth in length and diameter of the humerus, tibia, and metatarsus. Am J Anat. 1964; 3(114): 521- 38.
  • 5. Dumont ER. Bone density and the lightweight skeletons of birds. Proc R Soc Lond B Biol Sci. 2010; 1691(277): 2193- 98.
  • 6. Bradshaw R, Kirkden R, Broom D. A review of the aetiology and pathology of leg weakness in broilers in relation to welfare. Avian Biol Res. 2002; 2(13): 45-04.
  • 7. Kestin S, Knowles T, Tinch A, Gregory N. Prevalence of leg weakness in broiler chickens and its relationship with genotype. Vet Rec. 1992; 9(131): 190-94.
  • 8. Knowles TG, Kestin SC, Haslam SM, Brown SN, Green LE, Butterworth A, et al. Leg disorders in broiler chickens: prevalence, risk factors and prevention. PLoS One 2008; 2(3): e1545.
  • 9. Zhang B, Coon CN. The relationship of various tibia bone measurements in hens. Poult Sci J. 1997; 12(76): 1698-01.
  • 10. Süzer B, Tüfekçi K, Arican I, Petek M, Abdourhamane IM, Özbek M, et al. Effects of genotype and housing system on some bone biomechanical characteristics in broiler chickens. Vet Fak Derg. 2019; 3(66): 237-46.
  • 11. Harlander-Matauschek A, Rodenburg T, Sandilands V, Tobalske B, Toscano MJ. Causes of keel bone damage and their solutions in laying hens. Worlds Poult Sci J. 2015; 3(71): 461-72.
  • 12. Tauson R, Abrahamsson P. Foot and skeletal disorders in laying hens: Effects of perch design, hybrid, housing system and stocking density. Acta Agric Scand A Anim Sci. 1994; 2(44): 110-19.
  • 13. Casinos A, Cubo J. Avian long bones, flight and bipedalism. Comp Biochem Physiol A Mol Integr Physiol. 2001; 1(131): 159-67.
  • 14. Štofaníková J, Šály J, Molnár L, Sesztáková E, Vrabec V. The mechanical properties of broiler chicken bones affected by different dietary zinc levels. Afr J Biotechnol. 2012; 20(11): 4681-86.
  • 15. Rath N, Huff G, Huff W, Balog J. Factors regulating bone maturity and strength in poultry. Poult Sci J. 2000; 7(79): 1024-32.
  • 16. Ammann P, Robin B, Rizzoli R. Long-term exposure to strontium ranelate dose-dependently increases intrinsic bone quality. J Bone Miner Res. 2003, pp. S276.
  • 17. Reichmann K, Connor J. Influence of dietary calcium and phosphorus on metabolism and production in laying hens. Br Poult Sci. 1977; 6(18): 633-40.
  • 18. Aguado E, Pascaretti-Grizon F, Goyenvalle E, Audran M, Chappard D. Bone mass and bone quality are altered by hypoactivity in the chicken. PLoS One. 2015; 1(10): e0116763.
  • 19. Canello S, Gasparini G, Luisetto P, Di Cerbo A, Pomerri F. Bone computed tomography mineral content evaluation in chickens: effects of substances in homeopathic concentration. Homeopathy. 2016; 1(105): 92-95.
  • 20. Charuta A, Cooper R. Computed tomographic and densitometric analysis of tibiotarsal bone mineral density and content in postnatal Peking ducks (Anas platyrhynchos var. domestica) as influenced by age and sex. Pol J Vet Sci. 2012; 3(15).
  • 21. Dirrigl F, Dalsky G, Warner S. Dual‐energy x‐ray absorptiometry of birds: an examination of excised skeletal specimens. J Vet Med A. 2004; 6(51): 313-19.
  • 22. Fleming R, Korver D, McCormack H, Whitehead C. Assessing bone mineral density in vivo: digitized fluoroscopy and ultrasound. Poult Sci J. 2004; 2(83): 207-14.
  • 23. Fleming R, McCormack H, Whitehead C. Prediction of breaking strength in osteoporotic avian bone using digitized fluoroscopy, a low cost radiographic technique. Calcif Tissue Int. 2000; 4(67): 309-13.
  • 24. Hester P, Schreiweis M, Orban J, Mazzuco H, Kopka M, Ledur M, et al. Assessing bone mineral density in vivo: dual energy X-ray absorptiometry. Poult Sci J. 2004; 2(83): 215-21.
  • 25. Kerschnitzki M, Zander T, Zaslansky P, Fratzl P, Shahar R, Wagermaier W. Rapid alterations of avian medullary bone material during the daily egg-laying cycle. Bone. 2014; (69): 109-17.
  • 26. Schreiweis M, Orban J, Ledur M, Moody D, Hester P. Validation of dual-energy X-ray absorptiometry in live White Leghorns. Poult Sci J. 2005; 1(84): 91-99.
  • 27. Sparke A, Sims T, Avery N, Bailey A, Fleming R, Whitehead C. Differences in composition of avian bone collagen following genetic selection for resistance to osteoporosis. Br Poult Sci. 2002; 1(43): 127-34.
  • 28. Talaty P, Katanbaf M, Hester P. Life cycle changes in bone mineralization and bone size traits of commercial broilers. Poult Sci J. 2009; 5(88): 1070-77.
  • 29. Neijat M, Casey-Trott T, Robinson S, Widowski T, Kiarie E. Effects of rearing and adult laying housing systems on medullary, pneumatic and radius bone attributes in 73-wk old Lohmann LSL lite hens. Poult Sci J. 2019; 7(98): 2840-45.
  • 30. Harner JP, Wilson JH. Testing techniques for determination of poultry bone strength. Trans ASAE. 1986; 2(29): 642-44.
  • 31. Steiner M, Volkheimer D, Meyers N, Wehner T, Wilke H-J, Claes L, et al. Comparison between different methods for biomechanical assessment of ex vivo fracture callus stiffness in small animal bone healing studies. PLoS One. 2015; 3(10): e0119603.
  • 32. Turner CH, Burr DB. Basic biomechanical measurements of bone: a tutorial. Bone. 1993; 4(14): 595-08.
  • 33. Kim W, Bloomfield S, Sugiyama T, Ricke S. Concepts and methods for understanding bone metabolism in laying hens. Worlds Poult Sci J. 2012; 1(68): 71-82.
  • 34. Turner C. Biomechanics of bone: determinants of skeletal fragility and bone quality. Osteoporos Int. 2002; 2(13): 97-04.
  • 35. Massé PG, Boskey AL, Ziv I, Hauschka P, Donovan SM, Howell DS, et al. Chemical and biomechanical characterization of hyperhomocysteinemic bone disease in an animal model. BMC Musculoskelet Disord. 2003; 1(4): 1-10.
  • 36. An YH, Draughn RA. Mechanical testing of bone and the bone-implant interface. CRC press; 1999. p. 175-19.
  • 37. Hossain MA, Islam AF, Iji P. Growth responses, excreta quality, nutrient digestibility, bone development and meat yield traits of broiler chickens fed vegetable or animal protein diets. S Afr J Anim Sci. 2013; 2(43): 208-18.
  • 38. Diefenbeck M, Mückley T, Zankovych S, Bossert J, Jandt KD, Schrader C, et al. Freezing of rat tibiae at-20 c does not affect the mechanical properties of intramedullary bone/ implant-interface: brief report. Open J Orthop. 2011; 5): 219.
  • 39. Linde F, Sørensen HCF. The effect of different storage methods on the mechanical properties of trabecular bone. J Biomech. 1993; 10(26): 1249-52.
  • 40. Vaughan PE, Orth MW, Haut RC, Karcher DM. A method of determining bending properties of poultry long bones using beam analysis and micro-CT data. Poult Sci J. 2016; 1(95): 207-12.
  • 41. Furman B, Saha S. Torsional testing of bone. Mechanical Testing of Bone and the Bone-Implant Interface (ed. YH An and RA Draughn). 2000; 219-39.
  • 42. Ho KWK, Gilbody J, Jameson T, Miles AW. The effect of 4 mm bicortical drill hole defect on bone strength in a pig femur model. Arch Orthop Trauma Surg. 2010; 6(130): 797- 02.
  • 43. Lewis P, Danisman R, Gous R. Photoperiodic responses of broilers. III. Tibial breaking strength and ash content. Br Poult Sci. 2009; 6(50): 673-79.
  • 44. Toscano MJ, Nasr M, Hothersall B. Correlation between broiler lameness and anatomical measurements of bone using radiographical projections with assessments of consistency across and within radiographs. Poult Sci J. 2013; 9(92): 2251- 58.
  • 45. Standarts A. Shear and three-point bending test of animal bone. ANSI/ASAE S459 DEC01, USA. 2003.
  • 46. Duggan BM, Hocking PM, Schwarz T, Clements DN. Differences in hindlimb morphology of ducks and chickens: effects of domestication and selection. Genet Sel Evol. 2015; 1(47): 1-13.
  • 47. Williams B, Waddington D, Murray D, Farquharson C. Bone strength during growth: influence of growth rate on cortical porosity and mineralization. Calcif Tissue Int. 2004; 3(74): 236-45.
  • 48. Judex S, Lei X, Han D, Rubin C. Low-magnitude mechanical signals that stimulate bone formation in the ovariectomized rat are dependent on the applied frequency but not on the strain magnitude. J Biomech. 2007; 6(40): 1333-39.
  • 49. Lane NE, Yao W, Balooch M, Nalla RK, Balooch G, Habelitz S, et al. Glucocorticoid‐treated mice have localized changes in trabecular bone material properties and osteocyte lacunar size that are not observed in placebo‐treated or estrogen‐deficient mice. J Bone Miner Res. 2006; 3(21): 466- 76.
  • 50. Robling AG, Burr DB, Turner CH. Recovery periods restore mechanosensitivity to dynamically loaded bone. J Exp Biol. 2001; 19(204): 3389-99.
  • 51. Rubin CT, Lanyon LE. Regulation of bone mass by mechanical strain magnitude. Calcif Tissue Int. 1985; 4(37): 411-17.
  • 52. Warden SJ, Hurst JA, Sanders MS, Turner CH, Burr DB, Li J. Bone adaptation to a mechanical loading program significantly increases skeletal fatigue resistance. J Bone Miner Res. 2005; 5(20): 809-16.
  • 53. Kim W, Donalson L, Herrera P, Woodward C, Kubena L, Nisbet D, et al. Research note: Effects of different bone preparation methods (fresh, dry, and fat-free dry) on bone parameters and the correlations between bone breaking strength and the other bone parameters. Poult Sci J. 2004; 10(83): 1663-66.
  • 54. Gebhardt-Henrich SG, Pfulg A, Fröhlich EK, Käppeli S, Guggisberg D, Liesegang A, et al. Limited associations between keel bone damage and bone properties measured with computer tomography, three-point bending test, and analysis of minerals in Swiss laying hens. Front Vet Sci. 2017; 4): 128.
  • 55. Tatara MR, Krupski W, Kozłowski K, Drażbo A, Jankowski J. Effects of administration of four different doses of Escherichia coli phytase on femur properties of 16-weekold turkeys. BMC Vet Res. 2015; 1(11): 69.
  • 56. Shim M, Karnuah A, Mitchell A, Anthony N, Pesti G, Aggrey S. The effects of growth rate on leg morphology and tibia breaking strength, mineral density, mineral content, and bone ash in broilers. Poult Sci J. 2012; 8(91): 1790-95.
  • 57. Vitorović D, Pavlovski Z, Škrbić Z, Lukić M, Petričević V, Adamović ID. Morphometric and mechanical characteristics of leg bones in autochtonous naked neck breeds of chickens in Serbia. Biotechnology in Animal Husbandry. 2009; 5-6- 2(25): 1033-38.
  • 58. Cowin SC. Bone mechanics handbook, CRC press. 2001.
  • 59. Karásek F, Štenclová H, Št’astník O, Mrkvicová E, Pavlata L, Nedomová Š, et al. The effect of calcium and magnesium supplementation on performance and bone strength of broiler chickens. Potravinárstvo: Slovak Journal of Food Sciences. 2017; 1(11): 120-25.
  • 60. Rowland Jr L, Harms R. The effect of wire pens, floor pens and cages on bone characteristics of laying hens. Poult Sci J. 1970; 5(49): 1223-25.
  • 61. Liu D, Veit H, Wilson J, Denbow D. Long-term supplementation of various dietary lipids alters bone mineral content, mechanical properties and histological characteristics of Japanese quail. Poult Sci J. 2003; 5(82): 831-39.
  • 62. Wilson J, Ruszler P. Effects of dietary boron on poultry bone strength. Trans ASAE. 1995; 1(38): 167-70.
  • 63. Buijs S, Van Poucke E, Van Dongen S, Lens L, Baert J, Tuyttens FA. The influence of stocking density on broiler chicken bone quality and fluctuating asymmetry. Poult Sci J. 2012; 8(91): 1759-67.
  • 64. Capps SG. Effect of tibial dyschondroplasia on broiler growth and cancellous bone mechanical properties. Avian Dis. 1998; 162-67.
  • 65. Sevil-Kilimci F, Kara ME. Kemiklerin Mekanik Özelliklerinin Değerlendirilmesinde Kullanılan Temel Biyomekanik Kavramlar. Animal Health Production and Hygiene. 2013; 2(2): 235-39.
  • 66. Jepsen KJ, Silva MJ, Vashishth D, Guo XE, Van Der Meulen MC. Establishing biomechanical mechanisms in mouse models: practical guidelines for systematically evaluating phenotypic changes in the diaphyses of long bones. J Bone Miner Res. 2015; 30(6), 951-66.
APA Khan K, SEVIL KILIMCI F, KARA M (2021). Biomechanical tests: applications and their reliability for the prediction of bone strength in broiler chicken. , 85 - 92. 10.24880/maeuvfd.936262
Chicago Khan Komal,SEVIL KILIMCI FIGEN,KARA Mehmet Erkut Biomechanical tests: applications and their reliability for the prediction of bone strength in broiler chicken. (2021): 85 - 92. 10.24880/maeuvfd.936262
MLA Khan Komal,SEVIL KILIMCI FIGEN,KARA Mehmet Erkut Biomechanical tests: applications and their reliability for the prediction of bone strength in broiler chicken. , 2021, ss.85 - 92. 10.24880/maeuvfd.936262
AMA Khan K,SEVIL KILIMCI F,KARA M Biomechanical tests: applications and their reliability for the prediction of bone strength in broiler chicken. . 2021; 85 - 92. 10.24880/maeuvfd.936262
Vancouver Khan K,SEVIL KILIMCI F,KARA M Biomechanical tests: applications and their reliability for the prediction of bone strength in broiler chicken. . 2021; 85 - 92. 10.24880/maeuvfd.936262
IEEE Khan K,SEVIL KILIMCI F,KARA M "Biomechanical tests: applications and their reliability for the prediction of bone strength in broiler chicken." , ss.85 - 92, 2021. 10.24880/maeuvfd.936262
ISNAD Khan, Komal vd. "Biomechanical tests: applications and their reliability for the prediction of bone strength in broiler chicken". (2021), 85-92. https://doi.org/10.24880/maeuvfd.936262
APA Khan K, SEVIL KILIMCI F, KARA M (2021). Biomechanical tests: applications and their reliability for the prediction of bone strength in broiler chicken. Mehmet Akif Ersoy Üniversitesi Veteriner Fakültesi Dergisi, 6(2), 85 - 92. 10.24880/maeuvfd.936262
Chicago Khan Komal,SEVIL KILIMCI FIGEN,KARA Mehmet Erkut Biomechanical tests: applications and their reliability for the prediction of bone strength in broiler chicken. Mehmet Akif Ersoy Üniversitesi Veteriner Fakültesi Dergisi 6, no.2 (2021): 85 - 92. 10.24880/maeuvfd.936262
MLA Khan Komal,SEVIL KILIMCI FIGEN,KARA Mehmet Erkut Biomechanical tests: applications and their reliability for the prediction of bone strength in broiler chicken. Mehmet Akif Ersoy Üniversitesi Veteriner Fakültesi Dergisi, vol.6, no.2, 2021, ss.85 - 92. 10.24880/maeuvfd.936262
AMA Khan K,SEVIL KILIMCI F,KARA M Biomechanical tests: applications and their reliability for the prediction of bone strength in broiler chicken. Mehmet Akif Ersoy Üniversitesi Veteriner Fakültesi Dergisi. 2021; 6(2): 85 - 92. 10.24880/maeuvfd.936262
Vancouver Khan K,SEVIL KILIMCI F,KARA M Biomechanical tests: applications and their reliability for the prediction of bone strength in broiler chicken. Mehmet Akif Ersoy Üniversitesi Veteriner Fakültesi Dergisi. 2021; 6(2): 85 - 92. 10.24880/maeuvfd.936262
IEEE Khan K,SEVIL KILIMCI F,KARA M "Biomechanical tests: applications and their reliability for the prediction of bone strength in broiler chicken." Mehmet Akif Ersoy Üniversitesi Veteriner Fakültesi Dergisi, 6, ss.85 - 92, 2021. 10.24880/maeuvfd.936262
ISNAD Khan, Komal vd. "Biomechanical tests: applications and their reliability for the prediction of bone strength in broiler chicken". Mehmet Akif Ersoy Üniversitesi Veteriner Fakültesi Dergisi 6/2 (2021), 85-92. https://doi.org/10.24880/maeuvfd.936262