Yıl: 2021 Cilt: 22 Sayı: 6 Sayfa Aralığı: 426 - 431 Metin Dili: İngilizce DOI: 10.5 152/T urkTh oracJ .2021.20282 İndeks Tarihi: 04-01-2022

Association Between Cystic Fibrosis Severity Markers and CFTR Genotypes in Turkish Children

Öz:
OBJECTIVE: To compare class I/II cystic fibrosis transmembrane conductance regulator (CFTR) mutations to class III-V mutations with regards to cystic fibrosis disease severity markers in children. MATERIAL AND METHODS: This study was designed as a cross-sectional study in Antalya province, located on the south coast of Turkey. The study included 38 cystic fibrosis patients aged between 0.6 and 18 years. The CFTR genotype of the patients was categorized into 2 groups based on the presence or absence of class I or class II mutations in any of the alleles. Group I comprised 8 homozygous, 8 with unknown alleles, and 8 compound heterozygous patients, and group II comprised 11 homozygous and 3 compound heterozygous patients. The groups were analyzed in respect of cystic fibrosis disease severity markers, such as spirometry, ShwachmanKulczycki score, body mass index (BMI), sweat chloride concentration, chronic Pseudomonas aeruginosa infection, annual exacerbation frequency, and severe exacerbations requiring hospitalization during the previous year. RESULTS: In the comparison of group I and group II patients, a significant difference was observed in pancreas insufficiency (83.3% vs. 35.7%; P = .005), chronic P. aeruginosa infection (58.3% vs. 7.1%; P = .002), cough severity score (1.7 ± 1.1 vs. 0.9 ± 1.5; P = .029), number of severe exacerbations requiring hospitalization during the previous year (0.9 ± 1 vs. 0.3 ± 0.8; P = .03), and sweat chloride levels (76.7 ± 15.2 vs. 61 ± 22.3; P = .02). All these values were higher in group I patients. The mean BMI values (15.8 ± 2.2 vs. 17.6 ± 2.8; P = .03) were lower in group I patients. CONCLUSION: There seems to be a difference between class I/II CFTR mutations and class III-V mutations on the severity of the disease in cystic fibrosis patients.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • 1. Welsh MJ, Smith AE. Molecular mechanisms of CFTR chloride channel dysfunction in cystic fibrosis. Cell. 1993;73(7):1251- 1254. [CrossRef]
  • 2. Wilschanski M, Zielenski J, Markiewicz D, et al. Correlation of sweat chloride concentration with classes of the cystic fibrosis transmembrane conductance regulator gene mutations. J Pediatr. 1995;127(5):705-710. [CrossRef]
  • 3. Boyle MP, De Boeck KD. A new era in the treatment of cystic fibrosis: correction of the underlying CFTR defect. Lancet Respir Med. 2013;1(2):158-163. [CrossRef]
  • 4. Vankeerberghen A, Cuppens H, Cassiman JJ. The cystic fibrosis transmembrane conductance regulator: an intriguing protein with pleiotropic functions. J Cyst Fibros. 2002;1(1):13-29. [CrossRef]
  • 5. Gracia J, Mata F, Alvarez A, et al. Genotype-phenotype correlation for pulmonary function in cystic fibrosis Thorax. 2005;60(7):558-563. [CrossRef]
  • 6. Kerem E, Kerem B. Genotype-phenotype correlations in cystic fibrosis. Pediatr Pulmonol. 1996;22(6):387-395. [CrossRef]
  • 7. Welsh MJ, Tsui L-C, Boat TF, et al. Cystic fibrosis. In: Scriver CR, Beaudet AL, Sly WS, Valle D, eds. The Metabolic and Molecular Bases of Inherited Disease; vol III. New York: McGraw-Hill; 1995:3799-3876.
  • 8. Zielenski J. Genotype and phenotype in cystic fibrosis. Respiration. 2000;67(2):117-133. [CrossRef]
  • 9. Knowles MR, Drumm M. The influence of genetics on cystic fibrosis phenotypes. Cold Spring Harb Perspect Med. 2012;2(12):a009548. [CrossRef]
  • 10. Castellani C, Cuppens H, Macek Jr M, et al. consensus on the use and interpretation of cystic fibrosis mutation analysis in clinical practice. J Cyst Fibros. 2008;7(3):179-196. [CrossRef]
  • 11. McKone EF, Emerson SS, Edwards KL, Aitken ML. Effect of genotype on phenotype and mortality in cystic fibrosis: a retrospective cohort study. Lancet. 2003;361(9370):1671-1676. [CrossRef]
  • 12. ECFS Patient Registry. https://www.ecfs.eu/ecfspr/. Accessed August14, 2019.
  • 13. Emiralioğlu N, Özçelik U, Yalçın E, Doğru D, Kiper N. Diagnosis of cystic fibrosis with chloride meter (Sherwood M926S chloride analyzer®) and sweat test analysis system (CFΔ collection system®) compared to the Gibson Cooke method. Turk J Pediatr. 2016;58(1):27-33. [CrossRef]
  • 14. Neyzi O, Bundak R, Gökçay G, et al. Reference values for weight, height, head circumference and body mass index in Turkish children. J Clin Res Pediatr Endocrinol. 2015;7(4):280- 293. [CrossRef]
  • 15. Pressler T, Bohmova C, Conway S, et al. Chronic Pseudomonas aeruginosa infection definition: EuroCareCF Working Group report. J Cyst Fibros. 2011;10(2):S75-S78. [CrossRef].
  • 16. Flume PA, Mogayzel PJ, Robinson KA, et al. Cystic fibrosis pulmonary guidelines: treatment of pulmonary exacerbations. Am J Respir Crit Care Med. 2009;180(9):802-808. [CrossRef]
  • 17. Chung KF. Cough: Causes, Mechanisms and Therapy. Blackwell Publishing; Oxford; 2008:40.
  • 18. Turck D, Braegger CP, Colombo C, et al. ESPEN-ESPGHANECFS guidelines on nutrition care for infants, children, and adults with cystic fibrosis. Clin Nutr. 2016 ;35(3):557-577. [CrossRef]
  • 19. Lahiri DK, Nurnberger JI Jr. A rapid non-enzymatic method for the preparation of HMW DNA from blood for RFLP studies. Nucleic Acids Res. 1991;19(19):5444. [CrossRef]
  • 20. Tsui LC. The spectrum of cystic fibrosis mutations. Trends Genet. 1992;8(11):392-398. [CrossRef]
  • 21. Zielenski J, Tsui LC. Cystic fibrosis: genotypic and phenotypic variations. Annu Rev Genet. 1995;29:777-807. [CrossRef]
  • 22. Macgregor AR, Rhaney K. Congenital fibrocystic disease of the pancreas; a report of two proved cases of dissimilar clinical types in siblings. Arch Dis Child. 1948;23(113):56-60. [CrossRef]
  • 23. O’Neal WK, Knowles MR. Cystic fibrosis disease modifiers: complex genetics defines the phenotypic diversity in a monogenic disease. Annu Rev Genomics Hum Genet. 2018;19:201- 222. [CrossRef]
  • 24. Wilk M, Braun AT, Farrell PM, et al. Applying whole-genome sequencing in relation to phenotype and outcomes in siblings with cystic fibrosiscold spring harb. Mol Case Stud 2020;6(1): a004531.
  • 25. Blackman SM, Deering-Brose R, McWilliams R, et al. Relative contribution of genetic and nongenetic modifiers to intestinal obstruction in cystic fibrosis. Gastroenterology. 2006;131(4):1030-1039. [CrossRef]
  • 26. Ooi CY, Dorfman R, Cipolli M, et al. Type of CFTR mutation determines risk of pancreatitis in patients with cystic fibrosis. Gastroenterology. 2011;140(1):153-161. [CrossRef]
  • 27. Terlizzi V, Tosco A, Tomaiuolo R, et al. Prediction of acute pancreatitis risk based on PIP score in children with cystic fibrosis. J Cyst Fibros. 2014;13(5):579-584. [CrossRef]
  • 29. Adler AI, Shine BS, Chamnan P, Haworth CS, Bilton D, et al. Genetic determinants and epidemiology of cystic fibrosisrelated diabetes: results from a British cohort of children and adults. Diabetes Care. 2008;31(9):1789-1794. [CrossRef]
  • 30. Corey M, Edwards L, Levison H, Knowles M. Longitudinal analysis of pulmonary function decline in patients with CF. J Pediatr. 1997;131(6):809-814. [CrossRef]
  • 31. Wilschanski M, Dupuis A, Ellis L, et al. Mutations in the cystic fibrosis transmembrane regulator gene and in vivo transepithelial potentials. Am J Respir Crit Care Med. 2006;174(7):787- 794. [CrossRef]
  • 32. Groman JD, Meyer ME, Wilmott RW, Zeitlin PL, Cutting GR. Variant cystic fibrosis phenotypes in the absence of CFTR mutations. N Engl J Med. 2002;347(6):401-407. [CrossRef]
  • 33. Turkey Patient registry. https ://ww w.kis tikfi brozi sturk iye.o rg/wp - conte nt/up loads /2020 /06/U KKS-2 018-r aporu -09-0 6-202 0.pdf .
  • 34. Onay T, Topaloglu O, Zielenski J, et al. Analysis of the CFTR gene in Turkish cystic fibrosis patients: identification of three novel mutations (3172delAC, P1013L and M1028I). Hum Genet. 1998;102(2):224-230. [CrossRef]
  • 35. Bobadilla JL, Macek Jr M, Fine JP, Farrell PM. Cystic fibrosis: a worldwide analysis of CFTR mutations—correlation with incidence data and application to screening. Hum Mutat. 2002;19(6):575-606. [CrossRef]
  • 36. Cystic Fibrosis Foundation Patient Registry 2016. Annual Data Report Bethesda, Maryland.
  • 37. Fajac I, Viel M, Gaitch N, Hubert D, Bienvenu T. Combination of ENaC and CFTR mutations may predispose to cystic fibrosislike disease. Eur Respir J. 2009;34(3):772-773. [CrossRef]
APA Başaran A, Başaran A, Kocacik Uygun D, Yilmaz E, Azad A, oz l, Alper O, Bingöl A (2021). Association Between Cystic Fibrosis Severity Markers and CFTR Genotypes in Turkish Children. , 426 - 431. 10.5 152/T urkTh oracJ .2021.20282
Chicago Başaran Abdurrahman Erdem,Başaran Ayşen,Kocacik Uygun Dilara Fatma,Yilmaz Elanur,Azad Asef,oz latife,Alper Ozgul,Bingöl Ayşen Association Between Cystic Fibrosis Severity Markers and CFTR Genotypes in Turkish Children. (2021): 426 - 431. 10.5 152/T urkTh oracJ .2021.20282
MLA Başaran Abdurrahman Erdem,Başaran Ayşen,Kocacik Uygun Dilara Fatma,Yilmaz Elanur,Azad Asef,oz latife,Alper Ozgul,Bingöl Ayşen Association Between Cystic Fibrosis Severity Markers and CFTR Genotypes in Turkish Children. , 2021, ss.426 - 431. 10.5 152/T urkTh oracJ .2021.20282
AMA Başaran A,Başaran A,Kocacik Uygun D,Yilmaz E,Azad A,oz l,Alper O,Bingöl A Association Between Cystic Fibrosis Severity Markers and CFTR Genotypes in Turkish Children. . 2021; 426 - 431. 10.5 152/T urkTh oracJ .2021.20282
Vancouver Başaran A,Başaran A,Kocacik Uygun D,Yilmaz E,Azad A,oz l,Alper O,Bingöl A Association Between Cystic Fibrosis Severity Markers and CFTR Genotypes in Turkish Children. . 2021; 426 - 431. 10.5 152/T urkTh oracJ .2021.20282
IEEE Başaran A,Başaran A,Kocacik Uygun D,Yilmaz E,Azad A,oz l,Alper O,Bingöl A "Association Between Cystic Fibrosis Severity Markers and CFTR Genotypes in Turkish Children." , ss.426 - 431, 2021. 10.5 152/T urkTh oracJ .2021.20282
ISNAD Başaran, Abdurrahman Erdem vd. "Association Between Cystic Fibrosis Severity Markers and CFTR Genotypes in Turkish Children". (2021), 426-431. https://doi.org/10.5 152/T urkTh oracJ .2021.20282
APA Başaran A, Başaran A, Kocacik Uygun D, Yilmaz E, Azad A, oz l, Alper O, Bingöl A (2021). Association Between Cystic Fibrosis Severity Markers and CFTR Genotypes in Turkish Children. Turkish Thoracic Journal, 22(6), 426 - 431. 10.5 152/T urkTh oracJ .2021.20282
Chicago Başaran Abdurrahman Erdem,Başaran Ayşen,Kocacik Uygun Dilara Fatma,Yilmaz Elanur,Azad Asef,oz latife,Alper Ozgul,Bingöl Ayşen Association Between Cystic Fibrosis Severity Markers and CFTR Genotypes in Turkish Children. Turkish Thoracic Journal 22, no.6 (2021): 426 - 431. 10.5 152/T urkTh oracJ .2021.20282
MLA Başaran Abdurrahman Erdem,Başaran Ayşen,Kocacik Uygun Dilara Fatma,Yilmaz Elanur,Azad Asef,oz latife,Alper Ozgul,Bingöl Ayşen Association Between Cystic Fibrosis Severity Markers and CFTR Genotypes in Turkish Children. Turkish Thoracic Journal, vol.22, no.6, 2021, ss.426 - 431. 10.5 152/T urkTh oracJ .2021.20282
AMA Başaran A,Başaran A,Kocacik Uygun D,Yilmaz E,Azad A,oz l,Alper O,Bingöl A Association Between Cystic Fibrosis Severity Markers and CFTR Genotypes in Turkish Children. Turkish Thoracic Journal. 2021; 22(6): 426 - 431. 10.5 152/T urkTh oracJ .2021.20282
Vancouver Başaran A,Başaran A,Kocacik Uygun D,Yilmaz E,Azad A,oz l,Alper O,Bingöl A Association Between Cystic Fibrosis Severity Markers and CFTR Genotypes in Turkish Children. Turkish Thoracic Journal. 2021; 22(6): 426 - 431. 10.5 152/T urkTh oracJ .2021.20282
IEEE Başaran A,Başaran A,Kocacik Uygun D,Yilmaz E,Azad A,oz l,Alper O,Bingöl A "Association Between Cystic Fibrosis Severity Markers and CFTR Genotypes in Turkish Children." Turkish Thoracic Journal, 22, ss.426 - 431, 2021. 10.5 152/T urkTh oracJ .2021.20282
ISNAD Başaran, Abdurrahman Erdem vd. "Association Between Cystic Fibrosis Severity Markers and CFTR Genotypes in Turkish Children". Turkish Thoracic Journal 22/6 (2021), 426-431. https://doi.org/10.5 152/T urkTh oracJ .2021.20282