Yıl: 2021 Cilt: 14 Sayı: 1 Sayfa Aralığı: 195 - 203 Metin Dili: İngilizce DOI: 10.18185/erzifbed.776981 İndeks Tarihi: 02-03-2022

Effects of mass flow rate and equivalence ratio on laminar premixed methane air flame

Öz:
The structures of laminar premixed flames of methane air mixture are investigated for different equivalence ratios and different mass fluxes numerically. Equivalence ratio values are taken as 0.6, 1 and 1.4 that can be seen in engineering applications. These values correspond to lean, stoichiometric and rich methane-air mixtures respectively. CHEMKIN 19 program and GRI-Mech 3.0 mechanism are used for numerical solution. The axial velocity and mole fractions of CH4 and O2 as reactants, and mole fractions of H2O, CO, CO2 and H2 as products are investigated for each runs. It is found that with the increase of the mass flow rate; the axial velocities of the flame, the axial location of the reaction zones and the mole fraction values of the intermediates increases. The values of the mole fractions of the reactants do not change with mass flux.
Anahtar Kelime:

Kütle debisi ve denklik oranlarının ön karışımlı laminar metan-hava karışımı alevi üzerine etkileri

Öz:
Metan hava karışımından oluşan laminer ön karışımlı alev yapısı farklı denklik oranı ve farklı kütle debileri için sayısal olarak incelenmiştir. Mühendislik uygulamalarında görülen değerler olarak denklik oranları 0,6, 1 ve 1,4 olarak seçilmiştir. Bu değerler sırasıyla fakir, stokiyometrik ve zengin metan hava karışımı değerlerine karşılık gelmektedir. Kütle debileri olarak 0,01, 0,1 ve 0,3 g/cm2 s seçilmiştir. Sayısal çözümleme için CHEMKIN 19 programı ve GRI-Mech 3.0 mekanizması kullanılmıştır. Her bir deneme sonucunda alevin eksenel hızı ve reaksiyona giren CH4 ile O2 ve reaksiyon sonucunda H2O, CO, CO2 ve H2 nin mol oranları belirlenmiştir. Sonuç olarak, kütle debisi arttıkça, alevin eksenel hızının arttığı, reaksiyon bölgesinin eksenel konumunun ve ara bileşiklerin mol oranlarının arttığı belirlenmiştir. Ayrıca kütle debisinin değişmesi ile ürünlerin mol oranlarının değişmediği görülmüştür.
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • Botha, J.P., Spalding, D.B., (1954), The laminar flame speed of propane/air mixtures with heat extraction from the flame, Proceedings of the Royal Society A, Mathematical, Physical and Engineering Sciences 225,(1160) (Aug. 6, 1954), 71-96. https://doi.org/10.1098/rspa.1954.0188
  • Cardona, C., Amell, A., and Burbano, H.. 2013. “Laminar Burning Velocity of Natural Gas/Syngas-Air Mixture”, Dyna, 80(180), 136-143. Retrieved July 31, 2020, fromhttp://www.scielo.org.co/scielo.php?scri pt=sci_arttext&pid=S0012- 73532013000400017&lng=en&tlng=en. Chemkin-Pro 15112, Reaction Design: San Diego, 2011.
  • Date, A.W. (2011). “Analytic Combustion, With Thermodynamics, Chemical Kinetics,And Mass Transfer”, Cambridge University Press.
  • Dirrenberger, P., Gall,H. L., Bounaceur, R., Herbinet, O., Glaude P.A., Konnov, A., Leclerc, F.B., (2011) Measurements of Laminar Flame Velocity for Components of Natural Gas. Energy and Fuels, American Chemical Society, 25 (9), 3875-3884. ff10.1021/ef200707hff. ffhal-00776646f
  • Hirschfelder, J. O., Curtiss, C. F. and Bird, R. B. (1954) “Molecular Theory of Gases and Liquids,” John Wiley and Sons, New York.
  • Hu, M., 2013 “Numerical Modelling of Natural Gas Combustion”, A thesis submitted in fulfilment of the requirements for the degree of Master of Engineering, School of Aerospace, Mechanical and Manufacturing Engineering College of Science, Engineering and Health RMIT University.
  • Hu, S., Gao, J., Zhou, Y., Gong, C., Bai, X.S., Li, Z., Alden, M., 2017. “Numerical and experimental study on laminar methane air premixed flames at varying pressure”, Energy Procedia 105, 4970 – 4975.
  • Kee, R.J., Grcar, J. F., Smooke, M. D., Miller, J. A. and Meeks, (1998) E. PREMIX: A FORTRAN Program for Modeling Steady Laminar One-Dimensional Premixed Flames, R. Reaction Design 11436 Sorrento Valley Road San Diego, CA 92121.
  • Kuo, K.K. (2005) Principles of Combustion, John Wiley and Sons Inc, Second Ed. Liu, S., Tat, Chan, L., He, Z., Lu, Y., Jiang, X., WeiSoot, F., 2019. Formation And Evolution Characteristics in Premixed Methane/Ethylene-Oxygen-Argon BurnerStabilized Stagnation Flames, Fuel 242 (15), 871-882.
  • Maleta, T., 2017 “Blowoff Characteristics Of Partially Premixed Flames Of Prevaporized Blends Of Biofuels And Petroleum Fuels”, Master Of Science Thesis, University Of Oklahoma Graduate College.
  • Mendes, M.A.A., Pereira, J.C.F. 2008. “A numerical study of the stability of onedimensional laminar premixed flames in inert porous media”, Combustion and Flame 153, 525–539.
  • Ren, F.,Xianga, L., Chu, H., Ya, Y., Han, W, Nie, X., 2020 “Numerical investigation on the effect of CO2 and steam for the H2 intermediate formation and NOX emission in laminar premixed methane/air flames”, International Journal of Hydrogen Energy, 45,3785-3794.
  • Slefarski, R. 2019, Study on the Combustion Process of Premixed Methane Flames with CO2 Dilution at Elevated Pressures, Energies, 12, 348; doi:10.3390/en12030348
  • Smooke, M. D. ,1982, “Solution of burnerstabilized premixed laminar flames by boundary value methods”, Journal of Computational Physics, 48(1), 72– 105. doi:10.1016/0021-9991(82)90036-5 .
  • Tran, L.S., Glaude, P.A., Battin-Leclerc, F.,2013, “An experimental study of the structure of laminar premixed flames of ethanol/methane/oxygen/argon”, Combust Explos Shock Waves, 49(1): 11–18. doi:10.1134/S0010508213010024.
  • Varghese, R.J., Kumar, S., Aravind B, Kolekar, H. 2017. “Effect of CO2 Dilution on Laminar Burning Velocities of MethaneAir Mixture at Elevated Temperatures”, NAPC-2017, Proceedings of the 1st National Aerospace Propulsion Conference, March 15-17, 2017, IIT Kanpur, Kanpur.
  • Wu, Y. 2016 “Experimental investigation of laminar flame speeds of kerosene fuel and second generation biofuels in elevated conditions of pressure and preheat temperature”, Thèse, Docteur de la Normandie Université.
APA Atmaca U (2021). Effects of mass flow rate and equivalence ratio on laminar premixed methane air flame. , 195 - 203. 10.18185/erzifbed.776981
Chicago Atmaca Ulas Effects of mass flow rate and equivalence ratio on laminar premixed methane air flame. (2021): 195 - 203. 10.18185/erzifbed.776981
MLA Atmaca Ulas Effects of mass flow rate and equivalence ratio on laminar premixed methane air flame. , 2021, ss.195 - 203. 10.18185/erzifbed.776981
AMA Atmaca U Effects of mass flow rate and equivalence ratio on laminar premixed methane air flame. . 2021; 195 - 203. 10.18185/erzifbed.776981
Vancouver Atmaca U Effects of mass flow rate and equivalence ratio on laminar premixed methane air flame. . 2021; 195 - 203. 10.18185/erzifbed.776981
IEEE Atmaca U "Effects of mass flow rate and equivalence ratio on laminar premixed methane air flame." , ss.195 - 203, 2021. 10.18185/erzifbed.776981
ISNAD Atmaca, Ulas. "Effects of mass flow rate and equivalence ratio on laminar premixed methane air flame". (2021), 195-203. https://doi.org/10.18185/erzifbed.776981
APA Atmaca U (2021). Effects of mass flow rate and equivalence ratio on laminar premixed methane air flame. Erzincan Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 14(1), 195 - 203. 10.18185/erzifbed.776981
Chicago Atmaca Ulas Effects of mass flow rate and equivalence ratio on laminar premixed methane air flame. Erzincan Üniversitesi Fen Bilimleri Enstitüsü Dergisi 14, no.1 (2021): 195 - 203. 10.18185/erzifbed.776981
MLA Atmaca Ulas Effects of mass flow rate and equivalence ratio on laminar premixed methane air flame. Erzincan Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol.14, no.1, 2021, ss.195 - 203. 10.18185/erzifbed.776981
AMA Atmaca U Effects of mass flow rate and equivalence ratio on laminar premixed methane air flame. Erzincan Üniversitesi Fen Bilimleri Enstitüsü Dergisi. 2021; 14(1): 195 - 203. 10.18185/erzifbed.776981
Vancouver Atmaca U Effects of mass flow rate and equivalence ratio on laminar premixed methane air flame. Erzincan Üniversitesi Fen Bilimleri Enstitüsü Dergisi. 2021; 14(1): 195 - 203. 10.18185/erzifbed.776981
IEEE Atmaca U "Effects of mass flow rate and equivalence ratio on laminar premixed methane air flame." Erzincan Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 14, ss.195 - 203, 2021. 10.18185/erzifbed.776981
ISNAD Atmaca, Ulas. "Effects of mass flow rate and equivalence ratio on laminar premixed methane air flame". Erzincan Üniversitesi Fen Bilimleri Enstitüsü Dergisi 14/1 (2021), 195-203. https://doi.org/10.18185/erzifbed.776981