Yıl: 2021 Cilt: 45 Sayı: 1 Sayfa Aralığı: 65 - 77 Metin Dili: İngilizce DOI: 10.3906/vet-2008-13 İndeks Tarihi: 28-01-2022

Effects of colemanite, ulexite, and etibor-48 on rumen development of Akkaraman lambs

Öz:
Abstract: This study was carried out to determine the effect of addition colemanite, ulexite, and etibor-48 to diet including low Ca and P on the rumen development of Akkaraman lambs. Five treatment groups were consisted of standard Ca and P content (S), low Ca and P content (L), colemanite additive (C), ulexite additive (U), and etibor-48 additive (E) groups. Fifty Akkaraman male lamb weaned at 2.5 months old were used. Lambs were distributed to individual cages with 10 heads in each group; at the end of 90 days, 6 animals from each group were slaughtered and volumetric development of rumen and development of papillae were determined. The rumen empty weight significantly increased in E and U groups (P ˂ 0.05). The addition of U, E, and C had possitive effect on length, width, and density of papillae in dorsal and ventral region and sacs compared to L group (P ˂ 0.05). The length, width, and density of papillae in ventral region were significantly higher than those of the dorsal region (P ˂ 0.05). The length, width, and density of papillae in dorsal and ventral regions are seen in atrium ˃ dorsal ˃ caudodorsal sacs and craniaventral ˃ ventral ˃ caudoventral sac, respectively.Key words: Colemanite, ulexite, etibor-48, lamb, rumen, papilla
Anahtar Kelime:

Belge Türü: Makale Makale Türü: Araştırma Makalesi Erişim Türü: Erişime Açık
  • 1. Harrison HN, Warner RG, Sander EG, Loosli JK. Changes in the tissue and volume of the stomachs of calves following the removal of dry feed or consumption of inert bulk. Journal of Dairy Science 1960; 43: 1301-1312. doi: 10.3168/jds.S0022- 0302(60)90317-9
  • 2. Huntington GB. Starch utilization by ruminants: from basics to the bunk. Journal of Animal Science 1997; 75 (3): 852-867. doi: 10.2527/1997.753852x
  • 3. Stobo IJ, Roy JH, Gaston HJ. Rumen development in the calf: 1. The effect of diets containing different proportions of concentrates to hay on rumen development. British Journal of Nutrition 1966; 20 (2): 171-192. doi:10.1079/bjn19660021
  • 4. Church DC. The Ruminant Animal: Digestive Physiology and Nutrition. New Jersey, USA: Englewood Cliffs, NJ: PrenticeHall, Inc. 1988.
  • 5. Warner RG, Flatt WP, Loosli JK. Dietary factors influencing the development of the ruminant stomach. Journal of Agricultural and Food Chemistry 1956; 4: 788-792. doi:10.1021/jf60067a003
  • 6. Longenbach JI, Heinrichs AJ. A review of the importance and physiological role of curd formation in the abomasum of young calves. Animal Feed Science & Technology 1998; 73: 85- 97. doi: 10.1016/S0377-8401(98)00130-8
  • 7. Huber JT, Silva AG, Campos OF, Mathieu CM. Influence of feeding different amounts of milk on performance, health, and absorption capability of baby calves. Journal of Dairy Science 1984; 67 (12): 2957-2963.doi: 10.3168/jds.S0022- 0302(84)81659-8
  • 8. Warner RG, Flatt WP. Anatomical development of the ruminant stomach. In: Dougherty, RW (Editors). Physiology of Digestion in the Ruminant. Washington DC, USA: Butterworths; 1964. pp.24-38.
  • 9. Klein RD, Kincaid RL, Hodgson AS, Harrison JH, Hillers JK et al. Dietary fiber and early weaning on growth and rumen development of calves. Journal of Dairy Science 1987; 70 (10): 2095-2104. doi: 10.3168/jds.S0022-0302(87)80259-X
  • 10. Heinrichs J. Rumen development in the dairy calf. Advances in Dairy Technology 2005. 17: 179-187
  • 11. Shen Z, Seyfert HM, Lohrke B, Schneider F, Zitnan R et al. An energy-rich diet causes rumen papillae proliferation associated with more IGF type 1 receptors and increased plasma IGF-1 concentrations in young goats. Journal of Nutrition 2004; 134 (1): 11-17. doi: 10.1093/jn/134.1.11 10.1093/jn/134.1.11
  • 12. Greenwood RH, Morrill JL, Titgemeyer EC, Kennedy GA. A New method of measuring diet abrasion and its effect on the development of the forestomach. Journal of Dairy Science 1997; 80 (10): 2534-2541. doi: 10.3168/jds.S0022-0302(97)76207-6
  • 13. Nocek JE, Heald CW, Polan CE. Influence of ration physical form and nitrogen availability on ruminal morphology of growing bull calves. Journal of Dairy Science 1984; 67 (2): 334-343. doi: 10.3168/jds.S0022-0302(84)81306-5
  • 14. Kristensen NB, Sehested J, Jensen SK, Vestergaard M. Effect of milk allowance on concentrate ıntake, ruminal environment, and ruminal development in milk-fed holstein calves. Journal of Dairy Science. 2007; 90 (9): 4346-4355. doi: 10.3168/jds.2006- 885 1 5. Baldwin RL, VI, McLeod KR. Effects of diet forage:concentrate ratio and metabolizable energy intake on isolated rumen epithelial cell metabolism in vitro. Journal of Animal Science 2000; 78 (3): 771-783. doi: 10.2527/2000.783771x
  • 16. Lesmeister KE, Tozer PR, Heinrichs AJ. Development and analysis of a rumen tissue sampling procedure. Journal of Dairy Science 2004; 87: 1336-1344. 10.3168/jds.S0022-0302(04)73283-X
  • 17. Castillo-González AR, Burrola-Barraza ME, DomínguezViveros J, Chávez-Martíne A. Rumen microorganisms and fermentation. Archivos de Medicina Veterinaria 2014; 46 (3): 349-361. doi: 10.4067/S0301-732X2014000300003
  • 18. Hubbert FJR, Cheng E, Burroughs W. Mineral requirement of rumen microorganisms for cellulose digestion ın vitro. Journal of Animal Science 1958; 17 (3): 559-568. doi: 10.2527/ jas1958.173559x
  • 19. Martinez A, Church DC. Effects of various mineral elements on in vitro rumen cellulose digestion. Journal of Animal Science 1970; 31 (5): 982-990. doi: 10.2527/jas1970.315982x
  • 20. Cao JP, Henry R, Guo R, Holwerda RA, Toth JP et al. Chemical characteristics and relative bioavailability of supplemental organic zinc sources for poultry and ruminants. Journal of Animal Science. 2000; 78 (8): 2039-2054. doi: 10.2527/2000.7882039x
  • 21. Bennink MR, Tyler TR, Ward CiM, Johnson DE. Ionic milieu of bovine and ovine rumen as affected by diet. Journal of Dairy Science 1978; 61: 315-323 10.2527/2000.7882039x
  • 22. Ruckebusch Y, Thivend P. Digestive physiology and metabolism in ruminants. Proceedings The 5th International Ruminant Physiology Symposium, Clermont Ferrand; 1979. pp: 1-798. doi: 10.1007/978-94-011-8067-2.
  • 23. Bennett A, Rowe RI, Soch N, Eckhert CD. Boron stimulates yeast (Saccharomyces cerevisiae) growth. The Journal of Nutrition 1999; 129 (12): 2236-2238. doi: 10.1093/jn/129.12.2236
  • 24. Matuschka AGV. “Boronozing”, Wien:Hanser, 1980. pp100- 105 .
  • 25. NRC (2007). Nutrient Requirements of Small Ruminants: Sheep, Goats, Cervids, and New World Camelids. Washington, DC: The National Academies Press. https://doi. org/10.17226/11654.
  • 26. Dirksen VG, Liebich HG, Brosi G, Hagemeister H, Mayer E. Morphology of rumen mucosa and fatty acids absorption: Important factors for health and production. Zentralblatt fur Veterinarmedizin 1984; 31 (6): 414-430.
  • 27. Bannink A, GerritsWJJ, France J, Dijkstra J. Variation in rumen fermentation and the rumen wall during the transition period in dairy cows. Animal Feed Science and Technology 2012; 172: (1-2): 80-94. doi: 10.1016/j.anifeedsci.2011.12.010
  • 28. Önder H. Biyolojik araştırmalarda kullanılan parametrik olmayan istatistik yöntemler. Black Sea Journal of Engineering and Science 2018; 1 (1): 1-6.
  • 29. Liu JD, Lumpkins B, Mathis G, Williams SM, Fowler J. Evaluation of encapsulated sodium butyrate with varying releasing times on growth performance and necrotic enteritis mitigation in broilers. Poultry Science 2019; 98 (8): 3240-3245. doi:10.3382/ps/pez049
  • 30. Warner RG, Grippin CH, Flatt WP, Loosli JK. Further studies on the influence of diet on the development of the ruminant stomach. Journal of Dairy Science 1955; 38: 605
  • 31. Diao Q, Zhang R, Tu Y. Current research progresses on calf rearing and nutrition in China. Journal Integrative Agriculture 2017; 16 (12): 2805-2814. doi: 10.1016/S2095-3119(17)61767-2
  • 32. Davis CL, Drackley JK. The Development, Nutrition, and Management of the Young Calf. 1 st ed. Iowa City, IA, USA: Iowa State University Press: 1998.
  • 33. Stewart CS. Buffer capacity of nutrient media in relation to that of rumen fluid. Biochemical Journal 1972; 127 (3): 68. doi: 10.1042/bj1270068Pa
  • 34. Ward GAA. Effect of pre-weaning diet on lamb’s rumen development. American-Eurasian Journal of Agriculture. & Environmental Science 2008; 3 (4): 561-567
  • 35. Sun DM, Mao SY, Zhu WY, Liu JH. Effect of starter diet supplementation on rumen epithelial morphology and expression of genes involved in cell proliferation and metabolism in pre-weaned lambs. The International Journal of Animal Biosciences 2018; 12 (11): 2274-2283. doi: 10.1017/ S1751731118000290
  • 36. Durand M, Kawashima R. Influence of minerals in rumen microbial digestion. The 5th International Ruminant Physiology Symposium; Clermont Ferrand; 1979; pp: 375-408. doi: 10.1007/978-94-011-8067-2
  • 37. Lane MA, Jesse BW. Effect of volatile fatty acid infusion on development of the rumen epithelium in neonatal sheep. Journal of Dairy Science 1997; 80: 740-746. doi: 10.3168/jds. S0022-0302(97)75993-9
  • 38. Rémond D, Meschy F, Boivin R. Metabolites, water and mineral exchanges across the rumen wall: mechanisms and regulation. Annales de Zootechnie, 1996; 45 (2): 97-119. doi: 10.1051/ animres:19960201
  • 39. Schäff CT, Gruse J, Maciej J, Pfuhl R, Zitnan R et al. Effects of feeding unlimited amounts of milk replacer for the first 5 weeks of age on rumen and small intestinal growth and development in dairy calves. Journal of Dairy Science 2018; 101 (1): 783-793. doi: 10.3168/jds.2017-13247
APA Saricicek B, Yıldırım B (2021). Effects of colemanite, ulexite, and etibor-48 on rumen development of Akkaraman lambs. , 65 - 77. 10.3906/vet-2008-13
Chicago Saricicek Betul Zehra,Yıldırım Birgül Effects of colemanite, ulexite, and etibor-48 on rumen development of Akkaraman lambs. (2021): 65 - 77. 10.3906/vet-2008-13
MLA Saricicek Betul Zehra,Yıldırım Birgül Effects of colemanite, ulexite, and etibor-48 on rumen development of Akkaraman lambs. , 2021, ss.65 - 77. 10.3906/vet-2008-13
AMA Saricicek B,Yıldırım B Effects of colemanite, ulexite, and etibor-48 on rumen development of Akkaraman lambs. . 2021; 65 - 77. 10.3906/vet-2008-13
Vancouver Saricicek B,Yıldırım B Effects of colemanite, ulexite, and etibor-48 on rumen development of Akkaraman lambs. . 2021; 65 - 77. 10.3906/vet-2008-13
IEEE Saricicek B,Yıldırım B "Effects of colemanite, ulexite, and etibor-48 on rumen development of Akkaraman lambs." , ss.65 - 77, 2021. 10.3906/vet-2008-13
ISNAD Saricicek, Betul Zehra - Yıldırım, Birgül. "Effects of colemanite, ulexite, and etibor-48 on rumen development of Akkaraman lambs". (2021), 65-77. https://doi.org/10.3906/vet-2008-13
APA Saricicek B, Yıldırım B (2021). Effects of colemanite, ulexite, and etibor-48 on rumen development of Akkaraman lambs. Turkish Journal of Veterinary and Animal Sciences, 45(1), 65 - 77. 10.3906/vet-2008-13
Chicago Saricicek Betul Zehra,Yıldırım Birgül Effects of colemanite, ulexite, and etibor-48 on rumen development of Akkaraman lambs. Turkish Journal of Veterinary and Animal Sciences 45, no.1 (2021): 65 - 77. 10.3906/vet-2008-13
MLA Saricicek Betul Zehra,Yıldırım Birgül Effects of colemanite, ulexite, and etibor-48 on rumen development of Akkaraman lambs. Turkish Journal of Veterinary and Animal Sciences, vol.45, no.1, 2021, ss.65 - 77. 10.3906/vet-2008-13
AMA Saricicek B,Yıldırım B Effects of colemanite, ulexite, and etibor-48 on rumen development of Akkaraman lambs. Turkish Journal of Veterinary and Animal Sciences. 2021; 45(1): 65 - 77. 10.3906/vet-2008-13
Vancouver Saricicek B,Yıldırım B Effects of colemanite, ulexite, and etibor-48 on rumen development of Akkaraman lambs. Turkish Journal of Veterinary and Animal Sciences. 2021; 45(1): 65 - 77. 10.3906/vet-2008-13
IEEE Saricicek B,Yıldırım B "Effects of colemanite, ulexite, and etibor-48 on rumen development of Akkaraman lambs." Turkish Journal of Veterinary and Animal Sciences, 45, ss.65 - 77, 2021. 10.3906/vet-2008-13
ISNAD Saricicek, Betul Zehra - Yıldırım, Birgül. "Effects of colemanite, ulexite, and etibor-48 on rumen development of Akkaraman lambs". Turkish Journal of Veterinary and Animal Sciences 45/1 (2021), 65-77. https://doi.org/10.3906/vet-2008-13